DOI QR코드

DOI QR Code

Isolation and Characterization of Streptomyces spp. from Soil Showing Broad Spectrum Antibiotic Activity

광범위한 항균활성을 보이는 토양 유래 Streptomyces 속 방선균의 분리 및 특성 연구

  • Park, Sewook (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Bae, Taeok (School of Medicine, Indiana University) ;
  • Kim, Seung Bum (Department of Microbiology and Molecular Biology, Chungnam National University)
  • Received : 2012.11.16
  • Accepted : 2012.12.12
  • Published : 2012.12.31

Abstract

Three actinobacterial strains exhibiting broad spectrum antibiotic activities were isolated from soil, and characterized. Through the comparative analysis of 16S rRNA genes, the three isolates could be assigned to the genus Streptomyces, as S. tanashiensis, S. nashivillensis, and S. rubiginosohelvolus were found to be the mostly related species, but the strains formed independent phylogenetic lineage. Each strain exhibited different antimicrobial profile against Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus, Gram-negative bacteria Salmonella typhi, Enterobacter cloacae, Serratia marcescens, and Pseudomonas aeruginosa, and also fungi Candida tropicalis and Candida krusei. In addition to the antimicrobial profile, the strains also differed in API ZYM test results, which implies that the three strains might produce difference antimicrobial substances.

토양시료로부터 광범위한 항생작용을 보이는 방선균 3개 균주를 분리하여 그 특성을 조사하였다. 분리주의 16S rRNA 유전자 염기서열 비교 분석을 통해 3개 분리주는 모두 Streptomyces 속에 속하고, S. tanashiensis, S. nashivillensis 및 S. rubiginosohelvolus와 근연 관계에 있는 것으로 나타났으나 독립적인 계통을 형성하여 신종으로서의 가능성을 보여주었다. 항균활성 검정 결과 세 균주는 Bacillus subtilis, Staphylococcus aureus 등의 그람 양성세균, Salmonella typhi, Enterobacter cloacae, Serratia marcescens, Pseudomonas aeruginosa 등의 그람 음성 세균, 그리고 Candida tropicalis 및 Candida krusei 등의 진균류에 대해 각각 서로 다른 길항작용을 보였다. 또한 세 균주 간에는 생리학적 활성에도 차이가 나타나 각 균주가 서로 다른 항생물질을 분비할 가능성이 있음을 보여주었다.

Keywords

References

  1. Berdy, J. 2005. Bioactive microbial metabolites. A personal view (vol 59, pg 1, 2005). J. Antibiotics 58, 1-26. https://doi.org/10.1038/ja.2005.1
  2. Brimble, M.A., Nairn, M.R., and Duncalf, L.J. 1999. Pyranonaphthoquinone antibiotics - isolation, structure and biological activity. Nat. Prod. Rep. 16, 267-281. https://doi.org/10.1039/a804287j
  3. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375-382. https://doi.org/10.1126/science.8153624
  4. DeLeo, F.R. and Chambers, H.F. 2009. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Invest. 119, 2464- 2474. https://doi.org/10.1172/JCI38226
  5. Hayakawa, Y., Sohda, K., Furihata, K., Kuzuyama, T., Shin-Ya, K., and Seto, H. 1996. Studies on new antitumor antibiotics, leptofuranins A, B, C and D. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 49, 974-979. https://doi.org/10.7164/antibiotics.49.974
  6. Hopwood, D.A. 2007. Streptomyces in Nature and Medicine : The Antibiotic Maker. Oxford University Press, Oxford ; New York, N.Y., USA.
  7. Ikeda, Y., Naganawa, H., Kondo, S., and Takeuchi, T. 1992. Biosynthesis of bellenamine by Streptomyces nashvillensis using stable isotope labeled compounds. J. Antibiot. 45, 1919-1924. https://doi.org/10.7164/antibiotics.45.1919
  8. Ito, A., Ichikawa, Y., Horiguchi, S., Shirota, S., Kayama, Y., Chihara, S., Haneda, I., Hasuda, K., and Takano, S. 1976. Antibiotics No. K-73 and method for producing the same. USA Patent no. 3966913.
  9. Johnson, L.E. and Dietz, A. 1968. Kalafungin, a new antibiotic produced by Streptomyces tanashiensis strain Kala. Appl. Microbiol. 16, 1815- 1821.
  10. Kakinuma, S., Ikeda, H., Takada, Y., Tanaka, H., Hopwood, D.A., and Omura, S. 1995. Production of the new antibiotic tetrahydrokalafungin by transformants of the kalafungin producer Streptomyces tanashiensis. J. Antibiot. 48, 484-487. https://doi.org/10.7164/antibiotics.48.484
  11. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., and Yi, H. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716- 721. https://doi.org/10.1099/ijs.0.038075-0
  12. Lam, K.S. 2006. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol. 9, 245-251. https://doi.org/10.1016/j.mib.2006.03.004
  13. Lane, D. 1991 16S/23S rRNA sequencing. pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York, N.Y., USA.
  14. Miyadoh, S. 1993. Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. Actinomycetologica 7, 100-106. https://doi.org/10.3209/saj.7_100
  15. Osada, H. 1998. Actinomycetes, how fascinating microorganisms. Actinomycetologica 12, 85-88. https://doi.org/10.3209/saj.12_85
  16. Pullen, C., Schmitz, P., Meurer, K., Bamberg, D.D.V., Lohmann, S., Franca, S.D.C., Groth, I., Schlegel, B., Mollmann, U., Gollmick, F., and et al. 2002. New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae. Planta 216, 162-167. https://doi.org/10.1007/s00425-002-0874-6
  17. Saadoun, I. and Gharaibeh, R. 2003. The Streptomyces flora of Badia region of Jordan and its potential as a source of antibiotics active against antibiotic-resistant bacteria. J. Arid Environ. 53, 365-371. https://doi.org/10.1006/jare.2002.1043
  18. Tsuchida, T., Iinuma, H., Nishida, C., Kinoshita, N., Sawa, T., Hamada, M., and Takeuchi, T. 1995. Tetrodecamycin and dihydrotetrodecamycin, new antimicrobial antibiotics against Pasteurella piscicida produced by Streptomyces nashvillensis Mj885-Mf8. 1. Taxonomy, fermentation, isolation, characterization and biological activities. J. Antibiot. 48, 1104-1109. https://doi.org/10.7164/antibiotics.48.1104
  19. Turner, S., Pryer, K.M., Miao, V.P.W., and Palmer, J.D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46, 327-338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
  20. Walsh, C. 2003. Where will new antibiotics come from? Nat. Rev. Microbiol. 1, 65-70. https://doi.org/10.1038/nrmicro727
  21. Watve, M.G., Tickoo, R., Jog, M.M., and Bhole, B.D. 2001. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176, 386-390. https://doi.org/10.1007/s002030100345

Cited by

  1. Estimation of the Chitinolytic and Antifungal Activity of Streptomyces sp. CA-23 and AA-65 isolates Isolated from Waste Mushroom Media vol.19, pp.4, 2015, https://doi.org/10.7585/kjps.2015.19.4.402
  2. Acute toxicity of Herbicidin to environmental organisms vol.23, pp.3, 2019, https://doi.org/10.7585/kjps.2019.23.3.212
  3. Toxicity Evaluation of a Natural Herbicidal Material, Herbicidin to Rodents and Rabbits vol.24, pp.4, 2012, https://doi.org/10.7585/kjps.2020.24.4.334