DOI QR코드

DOI QR Code

Heavy Metal Effects on the Biodegradation of Fluorene by Sphingobacterium sp. KM-02 in liquid medium

Sphingobacterium sp. KM-02에 의한 Fluorene 분해에 미치는 배지 내 중금속 영향

  • Nam, In-Hyun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Jae-Gon (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 남인현 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 김재곤 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부 지질재해연구실)
  • Received : 2012.11.19
  • Accepted : 2012.12.06
  • Published : 2012.12.31

Abstract

The heavy metal effects on the degradation of fluorene by Sphingobacterium sp. KM-02 was determined in liquid cultures. The results showed that 10 mg/L cadmium, copper, zinc, and lead not only affected the growth of KM-02 with fluorene but also the ability of growing or resting cells to degrade this compound. Growth and fluorene degradation were strongly inhibited by cadmium and copper at 10 mg/L, while the inhibitory effect of zinc and lead at the same concentration or at 100 mg/L were not significant. In contrast, arsenic did not affect degradation or growth, even at very high concentrations of 100 mg/L. Subsequent analyses additionally revealed that concentrations of arsenic remained unchanged following incubation, while those of cadmium and copper decreased significantly.

Keywords

References

  1. Achten, C. and Hofmann, T., 2009, Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination, Sci. Total Environ., 407, 2461- 2473. https://doi.org/10.1016/j.scitotenv.2008.12.008
  2. Amor, L., Kennes, C., and Veiga, M.C., 2001, Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals, Bioresour. Technol., 78, 181-185. https://doi.org/10.1016/S0960-8524(00)00182-6
  3. Antizar-Ladislao, B., Lopez-Real, J.M., and Beck, A.J., 2006, Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches, J. Hazard. Mater., 137, 1583-1588. https://doi.org/10.1016/j.jhazmat.2006.04.056
  4. Baath, E., 1989, Effect of heavy metals in soil on microbial processes and population, Water Air Soil Pollut., 47, 335-379. https://doi.org/10.1007/BF00279331
  5. Bruins, M.R., Kapil, S., and Oehme, F.W., 2000, Microbial resistance to metals in the environment, Ecotoxicol. Environ. Saf., 45, 198-207. https://doi.org/10.1006/eesa.1999.1860
  6. Burgess, J.E., Quarmby, J., and Stephensen, T., 1999, Role of micronutrients in activated sludge-based biotreatment of industrial effluents, Biotechnol. Adv., 17, 49-70. https://doi.org/10.1016/S0734-9750(98)00016-0
  7. Casellas, M., Grifoll, M., Bayona, J.M., and Solanas, A.M., 1997, New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101, Appl. Environ. Microbiol., 63, 819-826.
  8. Chen, S.Y. and Lin, J.G., 2001, Effect of substrate concentration on bioleaching of metal-contaminated sediment, J. Hazard. Mater. B, 82, 77-89. https://doi.org/10.1016/S0304-3894(00)00357-5
  9. Grifoll, M., Selifonov, S.A., and Chapman, P.J., 1994, Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274, Appl. Environ. Microbiol., 60, 2438-2449.
  10. Hattori, H., 1992, Influence of heavy metals on soil microbial activities, Soil Sci. Plant Nutr., 38, 93-100. https://doi.org/10.1080/00380768.1992.10416956
  11. Helbig, K., Grosse, C., and Nies, D.H., 2008, Cadmium toxicity in glutathione mutants of Escherichia coli, J. Bacteriol., 190, 5439-5454. https://doi.org/10.1128/JB.00272-08
  12. Hong, H.B., Nam, I.H., Kim, Y.M., Chang, Y.S., and Schmidt, S., 2007, Effect of heavy metals on the biodegradation of dibenzofuran in liquid medium, J. Hazard. Mater., 140, 145-148. https://doi.org/10.1016/j.jhazmat.2006.06.049
  13. Jung, M.C. and Jung, M.Y., 2006, Evaluation and management method of environmental contamination from abandoned metal mines in Korea, J. Korean Soc. Geosystem Eng., 43(5), 383-394.
  14. Kanaly, R.A. and Harayama, S., 2000, Biodegradation of highmolecular- weight polycyclic aromatic hydrocarbons by bacteria, J. Bacteriol., 182, 2059-2067. https://doi.org/10.1128/JB.182.8.2059-2067.2000
  15. Keith, L.H. and Telliard, W.A., 1979, Priority pollutants. I. A perspective view, Environ. Sci. Technol., 13, 416-423. https://doi.org/10.1021/es60152a601
  16. Kim, J., 2010, Heavy metal concentrations in soils and crops in the Poongwon mine area, J. Korean Geoenviron. Soc., 11, 5-11.
  17. Kolomytseva, M.P., Randazzo, D., Baskunov, B.P., Scozzafava, A., Briganti, F., and Golovleva, L.A., 2009, Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469, Bioresour. Technol., 100, 839-844. https://doi.org/10.1016/j.biortech.2008.06.059
  18. Lee, P.K., Jo, H.Y., and Youm, S.J., 2004, Geochemical approaches for investigation and assessment of heavy metal contamination in abandoned mine sites, Econ. Environ. Geol., 37, 35-48.
  19. Lin, C.W., Chen, S.Y., and Cheng, Y.W., 2006, Effect of metals on biodegradation kinetics for methyl tert-butyl ether, Biochem. Eng. J., 32, 25-32. https://doi.org/10.1016/j.bej.2006.07.010
  20. Mitra, R.S. and Bernstein, I.A., 1978, Single-strand breakage in DNA of Escherichia coli exposed to $Cd^{2+}$, J. Bacteriol., 133, 75-80.
  21. Mittal, S.K. and Ratra, R.K., 2000, Toxic effect of metal ions on biochemical oxygen demand, Water Res., 34, 147-152. https://doi.org/10.1016/S0043-1354(99)00104-9
  22. Monna, L., Omori, T., and Kodama, T., 1993, Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans Dbf63, Appl. Environ. Microbiol., 59, 285-289.
  23. Mostert, M.M., Ayoko, G.A., and Kokot, S., 2010, Application of chemometrics to analysis of soil pollutants, Trends in Anal. Chem., 29, 430-445. https://doi.org/10.1016/j.trac.2010.02.009
  24. Nam, I.H., Chon, C.M., and Kim, J.G., 2011, Biodegradation of fluorene and bioremediation study by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated soil, J. Soil Groundwater Env., 16, 74-81. https://doi.org/10.7857/JSGE.2011.16.5.074
  25. Nam, I.H., Hong, H.B., Kim, Y.M., Kim, B.H., Murugesan, K., and Chang, Y.S., 2005, Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1, Water Res., 39, 4651-4660. https://doi.org/10.1016/j.watres.2005.09.009
  26. Nam, I.H., Kim, Y.M., Murugesan, K., Jeon, J.R., Chang, Y.Y., and Chang, Y.S., 2008, Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst, J. Hazard. Mater., 157, 114-121. https://doi.org/10.1016/j.jhazmat.2007.12.086
  27. Nam, I.H., Kim, Y.M., Schmidt, S., and Chang, Y.S., 2006, Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo- p-dioxin by Sphingomonas wittichii strain RW1, Appl. Environ. Microbiol., 72, 112-116. https://doi.org/10.1128/AEM.72.1.112-116.2006
  28. Nies, D.H., 1999, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 51, 730-750. https://doi.org/10.1007/s002530051457
  29. Pagnout, C., Frache, G., Poupin, P., Maunit, B., Muller, J.F., and Férard, J.F., 2007, Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. Strain SNP11: expression in Mycobacterium smegmatis mc2 155, Res. Microbiol., 158, 175-186. https://doi.org/10.1016/j.resmic.2006.11.002
  30. Pepi, M., Volterrani, M., Renzi, M., Marvasi, M., Gasperini, S., Franchi, E., and Focardi, S.E., 2007, Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization, J. Appl. Microbiol., 103, 2299- 2308. https://doi.org/10.1111/j.1365-2672.2007.03471.x
  31. Riis, V., Babel, W., and Pucci, O.H., 2002, Influence of heavy metals on the microbial degradation of diesel fuel, Chemosphere, 49, 559-568. https://doi.org/10.1016/S0045-6535(02)00386-7
  32. Said, W.A. and Lewis, D.L., 1991, Quantitative assessment of the effects of metals on microbial degradation of organic chemicals, Appl. Environ. Microbiol., 57, 1498-1503.
  33. Schuler, L., Ni Chadhain, S.M., Jouanneau, Y., Meyer, C., Zylstra, G.L., Hols, P., and Agathos, S.N., 2008, Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp. strain LB126, Appl. Environ. Microbiol., 74, 1050- 1057. https://doi.org/10.1128/AEM.01627-07
  34. Sokhn, J., De Leij, F.A., Hart, T.D., and Lynch, J.M., 2001, Effect of copper on the degradation of phenanthrene by soil microorganisms, Lett. Appl. Microbiol., 33, 164-168. https://doi.org/10.1046/j.1472-765x.2001.00972.x
  35. Thangaraj, K., Kapley, A., and Purohit, H.J., 2008, Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds, Bioresour. Technol., 99, 2488-2494. https://doi.org/10.1016/j.biortech.2007.04.053
  36. Tyler, G., 1974, Heavy metal pollution and soil enzymatic activity, Plant Soil, 41, 303-311. https://doi.org/10.1007/BF00017258
  37. Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J.R., Renard, M.-E., Springael, D., and Cornelis, G.R., 2001, Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis, Res. Microbiol., 152, 861-872. https://doi.org/10.1016/S0923-2508(01)01269-4
  38. Wilcke, W., 2007, Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil, Geoderma, 141, 157-166. https://doi.org/10.1016/j.geoderma.2007.07.007

Cited by

  1. Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.391