DOI QR코드

DOI QR Code

Effect of Extremely Low Frequency Magnetic Fields on Gene Expression in Human Mammary Epithelial MCF10A Cells

  • Hong, Mi-Na (Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences) ;
  • Lee, Hyung-Chul (Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Bong Cho (Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences) ;
  • Lee, Yun-Sil (College of Pharmacy & Division of Life Science and Pharmaceuticals, Ewha Womans University) ;
  • Gimm, Yoon-Myung (School of Electronics and Electrical Engineering, Dankook University) ;
  • Myung, Sung-Ho (Smart Grid Research Division, Korea Electrotechnology Research Institute) ;
  • Lee, Jae-Seon (Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences)
  • Received : 2012.09.28
  • Accepted : 2012.12.04
  • Published : 2012.12.31

Abstract

The effects of extremely low frequency magnetic fields (ELF-MFs) on physiological processes at the cellular level remain unclear despite a number of studies. To investigate the effects of ELF-MFs on gene expression, we exposed human mammary epithelial MCF10A cells to fields of 1 mT magnetic flux density at 60 Hz for 4 and 16 h and measured the transcriptional responses of 24,000 genes using Illumina microarrays. In three independent experiments, we found no statistically significant alteration of expression levels for any of the genes assayed using a cutoff value of 1.2-fold. To confirm this result, we selected six genes with trends suggesting possible expression level changes, although these trends were not statistically significant, and investigated their expression levels further using a semiquantitative reverse-transcription polymerase chain reaction. In three independent experiments, we did not find any alterations in the expression levels of these genes. From these results, we conclude that ELF-MFs do not affect gene expression profiles under our exposure conditions.

Keywords

References

  1. B. Henderson, M. Kind, G. Boeck, A. Helmberg, and G. Wick, "Gene expression profiling of human endothelial cells exposed to 50-Hz magnetic fields fails to produce regulated candidate genes," Cell Stress Chaperones, vol. 11, no. 3, pp. 227-232, 2006. https://doi.org/10.1379/CSC-196.1
  2. Z. Davanipour, C. C. Tseng, P. J. Lee, and E. Sobel, "A case-control study of occupational magnetic field exposure and Alzheimer's disease: results from the California Alzheimer's Disease Diagnosis and Treatment Centers," BMC Neurol, vol. 7, pp. 13-23, 2007. https://doi.org/10.1186/1471-2377-7-13
  3. D. A. Savitz, D. Liao, A. Sastre, R. C. Kleckner, and R. Kavet, "Magnetic field exposure and cardiovascular disease mortality among electric utility workers," Am. J. Epidemiol., vol. 149, no. 2, pp. 135-142, 1999. https://doi.org/10.1093/oxfordjournals.aje.a009779
  4. R. Polaniak, R. J. Bułdak, M. Karoń, K. Birkner, M. Kukla, K. Zwirska-Korczala, and E. Birkner, "Influence of an extremely low frequency magnetic field (ELF-EMF) on antioxidative vitamin E properties in AT478 murine squamous cell carcinoma culture in vitro," Int. J. Toxicol., vol. 29, no. 2, pp. 221-230, 2010. https://doi.org/10.1177/1091581809352011
  5. M. Sulpizio, S. Falone, F. Amicarelli, M. Marchisio, F. Di Giuseppe, E. Eleuterio, C. Di Ilio, and S. Angelucci, "Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF MF) on neuroblastoma cells," J. Cell Biochem., vol. 112, no. 12, pp. 3797-3806, 2011. https://doi.org/10.1002/jcb.23310
  6. F. I. Wolf, A. Torsello, B. Tedesco, S. Fasanella, A. Boninsegna, M. D'Ascenzo, C. Grassi, G. B. Azzena, and A. Cittadini, "50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism," Biochim. Biophys. Acta, vol. 1743, no. 1-2, pp. 120-129, 2005. https://doi.org/10.1016/j.bbamcr.2004.09.005
  7. M. A. Martínez, A. Úbeda, M. A. Cid, and M. Á. Trillo, "The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling," Cell Physiol. Biochem, vol. 29, no. 5-6, pp. 675-686, 2012. https://doi.org/10.1159/000178457
  8. E. Gottwald, W. Sontag, B. Lahni, and K. F. Weibezahn, "Expression of HSP72 after ELF-EMF exposure in three cell lines," Bioelectromagnetics, vol. 28, pp. 509-518, 2007. https://doi.org/10.1002/bem.20327
  9. T. Nikolova, J. Czyz, A. Rolletschek, P. Blyszczuk, J. Fuchs, G. Jovtchev, J. Schuderer, N. Kuster, and A. M. Wobus, "Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells," FASEB J., vol. 19, no. 12, pp. 1686-1688, 2005.
  10. S. Burdak-Rothkamm, K. Rothkamm, M. Folkard, G. Patel, P. Hone, D. Lloyd, L. Ainsbury, and K. M. Prise, "DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields," Mutat. Res., vol. 672, no. 2, pp. 82- 89, 2009. https://doi.org/10.1016/j.mrgentox.2008.10.016
  11. L. A. Coulton, P. A. Harris, A. T. Barker, and A. G. Pockley, "Effect of 50 Hz electromagnetic fields on the induction of heat-shock protein gene expression in human leukocytes," Radiat. Res., vol. 161, no. 14, pp. 430-434, 2004. https://doi.org/10.1667/RR3145
  12. G. P. Jahreis, P. G. Johnson, Y. L. Zhao, and S. W. Hui, "Absence of 60-Hz, 0.1-mT magnetic field- induced changes in oncogene transcription rates or levels in CEM-CM3 cells," Biochim. Biophys. Acta, vol. 1443, no. 3, pp. 334-342, 1998. https://doi.org/10.1016/S0167-4781(98)00238-3
  13. C. A. Morehouse, R. D. Owen, "Exposure to lowfrequency electromagnetic fields does not alter HSP- 70 expression or HSF-HSE binding in HL60 cells," Radiat. Res., vol. 153, no. 5, pp. 658-662, 2000. https://doi.org/10.1667/0033-7587(2000)153[0658:ETLFEF]2.0.CO;2
  14. G. Bodega, I. Forcada, I. Suárez, and B. Fernández, "Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture," Environ. Res., vol. 98, no. 3, pp. 355-362, 2005. https://doi.org/10.1016/j.envres.2004.12.010
  15. M. N. Hong, N. K. Han, H. C. Lee, Y. K. Ko, S. G. Chi, Y. S. Lee, Y. M. Gimm, S. H. Myung, and J. S. Lee, "Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells," J. Radiat. Res., vol. 53, no. 1, pp. 79-86, 2012. https://doi.org/10.1269/jrr.11049
  16. K. B. Kim, H. O. Byun, N. K. Han, Y. G. Ko, H. D. Choi, N. Kim, J. K. Pack, and J. S. Lee, "Twodimensional electrophoretic analysis of radio-frequency radiation-exposed MCF7 breast cancer cells," J. Radiat. Res., vol. 51, no. 2, pp. 205-213, 2010. https://doi.org/10.1269/jrr.09030
  17. D. Leszczynski, M. L. Meltz, "Questions and answers concerning applicability of proteomics and transcriptomics in EMF research," Proteomics, vol. 6, no. 17, pp. 4674-4677, 2006. https://doi.org/10.1002/pmic.200600414
  18. C. Luceri, C. De Filippo, L. Giovannelli, M. Blangiardo, D. Cavalieri, F. Aglietti, M. Pampaloni, D. Andreuccetti, L. Pieri, F. Bambi, A. Biggeri, and P. Dolara, "Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes," Radiat. Res., vol. 164, no. 3, pp. 277-285, 2005. https://doi.org/10.1667/RR3426.1
  19. J. F. Collard, B. Mertens, and M. Hinsenkamp, "In vitro study of the effects of ELF electric fields on gene expression in human epidermal cells," Bioelectromagnetics, vol. 32, no. 1, pp. 28-36, 2011. https://doi.org/10.1002/bem.20608
  20. R. Goodman, Y. Chizmadzhev, and A. Shirley-Henderson, "Electromagnetic fields and cells," J. Cell Biochem., vol. 51, no. 4, pp. 436-441, 1993. https://doi.org/10.1002/jcb.2400510408
  21. J. L. Phillips, W. Haggren, W. J. Thomas, T. Ishida- Jones, and W. R. Adey, "Magnetic field-induced changes in specific gene transcription," Biochim. Biophys. Acta., vol. 1132, no. 2, pp. 140-144, 1992. https://doi.org/10.1016/0167-4781(92)90004-J
  22. L. I. Loberg, W. R. Engdahl, J. R. Gauger, and D. L. McCormick, "Expression of cancer-related genes in human cells exposed to 60 Hz magnetic fields," Radiat. Res., vol. 153, no. 5, pp. 679-684, 2000. https://doi.org/10.1667/0033-7587(2000)153[0679:EOCRGI]2.0.CO;2
  23. E. K. Balcer-Kubiczek, G. H. Harrison, C. C. Davis, M. L. Haas, and B. H. Koffman, "Expression analysis of human HL60 cells exposed to 60 Hz square- or sine-wave magnetic fields," Radiat. Res., vol. 153, no. 2, pp. 670-678, 2000. https://doi.org/10.1667/0033-7587(2000)153[0670:EAOHHC]2.0.CO;2
  24. Y. L. Zhao, J. C. Yang, and Y. H. Zhang, "Effects of magnetic fields on intracellular calcium oscillations," Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2008, pp. 2124-2127, 2008.
  25. M. Hinsenkamp, J. F. Collard, "Bone morphogenic protein-mRNA upregulation after exposure to low frequency electric field," Int. Orthop., vol. 35, no. 10, pp. 1577-1581, 2011. https://doi.org/10.1007/s00264-011-1215-9