DOI QR코드

DOI QR Code

Syntheses and Properties of Quaternary Cr-Ti-B-N Coatings by a High Power Impulse Magnetron Sputtering Technique

  • Myoung, Hee-Bok (School of Materials Science and Engineering, Pusan National University) ;
  • Zhang, Teng Fei (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Jong-Keuk (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Kim, Doo-In (National Core Research Center for Hybrid Materials Solution, Pusan National University) ;
  • Kim, Kwang Ho (School of Materials Science and Engineering, Pusan National University)
  • Received : 2012.11.06
  • Accepted : 2012.12.30
  • Published : 2012.12.31

Abstract

Cr-Ti-B-N coatings were synthesized by a hybrid coating system combining high power impulse magnetron sputtering (HIPIMS) and DC pulse magnetron sputtering from a $TiB_2$ and a Cr target in argon-nitrogen environment, respectively. By changing the power applied on the Cr and $TiB_2$ cathodes, the Cr-Ti-B-N coatings with various Ti/Cr ratio and B content were deposited. The phase structure, microstructure and chemical compositions of the Cr-Ti-B-N coatings were studied by X-ray diffraction (XRD), transmission scanning electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). With increase of Cr element in the coatings, the nanocomposite microstructure consisting of nano-sized (Cr, Ti) N crystallites and amorphous BN phase were obtained in the coatings. The microhardness of the Cr-Ti-B-N coatings exhibited a peak value of ~41 GPa for the $CrTi_{0.1}B_{0.4}N_{1.3}$, and then decreased with further increase of Cr content in the coatings, and all the coatings exhibited low friction coefficient. The oxidation and corrosion behavior of the Cr-Ti-B-N coatings revealed better properties due to the formation of a nanocomposite microstructure.

Keywords

References

  1. S. A. Barnett, A. Madan, Physics World, 11 (1998) 45.
  2. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Männling, P. Nesladek, G. Dollinger, A. Bergmaier, Surf. Coat. Technol., 133 (2000) 152. https://doi.org/10.1016/S0257-8972(00)00957-9
  3. K. W. Lee, Y.-H. Chen, Y. W. Chung, L. M. Keer, Surf. Coat. Technol., 177 (2004) 591. https://doi.org/10.1016/S0257-8972(03)00931-9
  4. D. V. Shtansky, S. A. Kulinich, E. A. Levashov, A. N. Sheveiko, F. V. Kiriuhancev, J. J. Moore, Thin Solid Films, 330 (2002) 420-421.
  5. D. V. Shtansky, F. V. Kiryukhantsev-Korneev, A. N. Sheveiko, I. A. Bashkova, O. V. Malochkin, E. A. Levashov, N. B. D'yakonova, I. V. Lyasotsky, Phys. Solid State, 47 (2005) 252. https://doi.org/10.1134/1.1866403
  6. M. Audronis, P. J. Kelly, R. D. Arnell, A. Leyland, A. Matthews, Surf. Coat. Technol., 200 (2005) 1366. https://doi.org/10.1016/j.surfcoat.2005.08.022
  7. R. J. Brotherton, H. Steinberg, Progress in Boron Chemistry, vol.2, Pergamon Press, Oxford, (1970) 173.
  8. C. Mitterer, M. Rauter, P. Rodhammer, Surf. Coat. Technol., 41 (1990) 351. https://doi.org/10.1016/0257-8972(90)90146-4
  9. M. Tamura, H. Kubo, Surf. Coat. Technol., 54-55 (1992) 255-260. https://doi.org/10.1016/S0257-8972(09)90059-7
  10. E. Broszeit, B. Matthes, W. Herr, K. H. Kloos, Surf. Coat. Technol., 58 (1993) 29. https://doi.org/10.1016/0257-8972(93)90171-J
  11. W. Gissler, Surf. Coat. Technol., 68-69 (1994) 556. https://doi.org/10.1016/0257-8972(94)90217-8
  12. H. Karner, J. Laimer, H. Stori, P. Rodnammer, Surf. Coat. Technol., 39-40 (1991) 263.
  13. J. M. Antunes, A. Cavaleiro, L. F. Menezes, M. I. Simoes, J. V. Fernandes, Surf. Coat. Technol., 149 (2002) 27. https://doi.org/10.1016/S0257-8972(01)01413-X
  14. C. Mitterer, J. Solid State Chem., 133 (1997) 279-291. https://doi.org/10.1006/jssc.1997.7456
  15. B. Rother, H. Kappl, Surf. Coat. Technol., 73 (1995) 14. https://doi.org/10.1016/0257-8972(94)02352-2
  16. B. Rother, H. Kappl, Surf. Coat. Technol., 96 (1997) 163. https://doi.org/10.1016/S0257-8972(97)00074-1
  17. S. M. Aouadi, F. Namavar, E. Tobin, N. Finnegan, R. T. Haasch, R. Nilchiani, J. A. Turner, S. L. Rohde, J. Appl. Phys., 91 (2002) 1040. https://doi.org/10.1063/1.1426243
  18. P. V. Kiryukhantsev-Korneev, J. F. Pierson, M. I. Petrzhik, M. Alnot, E. A. Levashov, D. V. Shtansky, Thin Solid Films, 517 (2009) 2675-2680. https://doi.org/10.1016/j.tsf.2008.11.126
  19. J. Lin, B. Mishra, J. J. Moore, M. Pinkas, W. D. Sproul, Surf. Coat. Technol., 203 (2008) 588-593. https://doi.org/10.1016/j.surfcoat.2008.06.083
  20. D. V. Shtansky, A. N. Sheveiko, M. I. Petrzhik, E. Kiryukhantsev-Korneev, E. A. Levashov, A. Leyland, A. L. Yerokhin, A. Matthews, Surf. Coat. Technol., 200 (2005) 208-212. https://doi.org/10.1016/j.surfcoat.2005.02.126
  21. D. V. Shtansky, P. V. Kiryukhantsev-Komeev, A. N. Sheveyko, A. E. Kutyrev, E. A. Levashov, Surf. Coat. Technol., 202 (2007) 861-865. https://doi.org/10.1016/j.surfcoat.2007.05.064
  22. J. Paulitsch, M. Schenkel, T. Zufrass, P. H. Mayrhofer, W. D. Munz, Thin Solid Films, 518 (2010) 5558- 5564. https://doi.org/10.1016/j.tsf.2010.05.062
  23. J. L. Lin, N. Y. Zhang, W. D. Sproul, J. J. Moore, Surf. Coat. Technol., 206 (2012) 3283-3290. https://doi.org/10.1016/j.surfcoat.2012.01.033
  24. J. L. Lin, W. D. Sproul, J. J. Moore, Surf. Coat. Technol., 206 (2012) 2474-2483. https://doi.org/10.1016/j.surfcoat.2011.10.053
  25. J. L. Lin, W. D. Sproul, J. J. Moore, S. Lee, S. Myers, Surf. Coat. Technol., 205 (2011) 3226-3234. https://doi.org/10.1016/j.surfcoat.2010.11.039
  26. J. Paulitsch, P. H. Mayrhofer, W. D. Munz, M. Schenkel, Thin Solid Films, 517 (2008) 1239-1244. https://doi.org/10.1016/j.tsf.2008.06.080
  27. O. Nishimura, K. Yabe, M. Iwaki, J. Electron Spectrosc. Relat. Phemon., 49 (1989) 335 https://doi.org/10.1016/0368-2048(89)85021-2
  28. R. Merryfield, M. McDaniel, G. J. Parks, Catal., 77 (1982) 348. https://doi.org/10.1016/0021-9517(82)90178-6
  29. Y. M. Shulg'a, V. N. Troitskii, M. I. Aivazov, Y. G. Borodk'o, Zh. Neorg. Khimii, 21 (1976) 2621.
  30. W. E. Slinkard, P. B. Degroot, J. Catal., 68 (1981) 423. https://doi.org/10.1016/0021-9517(81)90113-5
  31. M. Romand, M. Roubin, Analusis, 4 (1976) 309.
  32. B. M. Biwer, S. L. Bernasek. J. Electron Spectrosc. Relat. Phemon., 40 (1986) 339. https://doi.org/10.1016/0368-2048(86)80044-5
  33. K. Hamrin, G. Johansson, U. Gelius, C. Nordling, K. Siegbahn, Phys. Scripta, 1 (1970) 277. https://doi.org/10.1088/0031-8949/1/5-6/018
  34. G. Rocchini, Corros. Sci., 37(6) (1995) 987-1003. https://doi.org/10.1016/0010-938X(95)00009-9

Cited by

  1. An investigation on the crack resistance of CrN, CrBN and CrTiBN coatings via nanoindentation vol.145, 2017, https://doi.org/10.1016/j.vacuum.2017.08.041