DOI QR코드

DOI QR Code

Combining Bias-correction on Regional Climate Simulations and ENSO Signal for Water Management: Case Study for Tampa Bay, Florida, U.S.

ENSO 패턴에 대한 MM5 강수 모의 결과의 유역단위 성능 평가: 플로리다 템파 지역을 중심으로

  • Hwang, Syewoon (Department of Agricultural and Biological engineering, University of Florida) ;
  • Hernandez, Jose (Bureau of Ocean Energy Management)
  • Received : 2012.06.01
  • Accepted : 2012.10.15
  • Published : 2012.12.30

Abstract

As demand of water resources and attentions to changes in climate (e.g., due to ENSO) increase, long/short term prediction of precipitation is getting necessary in water planning. This research evaluated the ability of MM5 to predict precipitation in the Tampa Bay region over 23 year period from 1986 to 2008. Additionally MM5 results were statistically bias-corrected using observation data at 33 stations over the study area using CDF-mapping approach and evaluated comparing to raw results for each ENSO phase (i.e., El Ni$\tilde{n}$o and La Ni$\tilde{n}$a). The bias-corrected model results accurately reproduced the monthly mean point precipitation values. Areal average daily/monthly precipitation predictions estimated using block-kriging algorithm showed fairly high accuracy with mean error of daily precipitation, 0.8 mm and mean error of monthly precipitation, 7.1 mm. The results evaluated according to ENSO phase showed that the accuracy in model output varies with the seasons and ENSO phases. Reasons for low predictions skills and alternatives for simulation improvement are discussed. A comprehensive evaluation including sensitivity to physics schemes, boundary conditions reanalysis products and updating land use maps is suggested to enhance model performance. We believe that the outcome of this research guides to a better implementation of regional climate modeling tools in water management at regional/seasonal scale.

수자원의 수요 증가와 ENSO (El Ni$\tilde{n}$o/La Ni$\tilde{n}$a Southern Oscillation) 등의 기후변화 현상으로 인한 수자원 공급의 불안정 요소가 제기됨에 따라, 수자원 관리 계획 수립 시 장/단기강우 모의의 중요성이 강조되고 있다. 본 연구에서는 미국 플로리다 템파 지역의 두 개 유역을 대상으로 1986년부터 2008년까지의 MM5 지역기후모델을 이용한 강우모의 결과를 시험지역의 33개 관측자료와 CDF-mapping 기법을 이용하여 통계적으로 보정하였으며 그 결과를 바탕으로 ENSO 패턴에 따른 모델의 성능을 평가하였다. 보정된 MM5일 강우 모의결과는 대체적으로 각 관측소의 월 평균 강우량 (ME: 1.0mm)을 잘 모의하는 것으로 나타났다. 블락-크리깅 기법을 이용하여 추정된 유역 평균 일/월 강우량 또한 관측치를 잘 재현하였다(일 강우 ME: 0.8mm, 월 강우 ME: 7.1mm). 한편, ONI (Oceanic Ni$\tilde{n}$o index)를 이용하여 구분한 ENSO 패턴에 따른 강우 모의치를 분석한 결과, 월별 엘리뇨/라니냐 해에 대한 유역 단위의 강우량 모의 성능이 상이한 것으로 나타났다. 이 원인으로 한정된 모수화 적용 및 모델 경계자료 오차 등을 제시하고 이에 대한 보정 방법개선 등의 추가 연구의 필요성을 지적하였다. 본 연구는 ENSO 패턴을 고려한 월별 기후모델 결과를 활용함에 있어 유의점을 제시하였기에, 우기와 건기에 대한 수자원 관리를 위한 적용 등에 유용하게 활용될 것으로 기대된다.

Keywords

References

  1. Alexandrov, V. A., and G. Hoogenboom, 2001: Climate variation and crop production in Georgia, USA, during the twentieth century. Climate Research 17, 33-43. https://doi.org/10.3354/cr017033
  2. Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. Journal of Applied Meteorology and Climatology 47, 2279-2299. doi:10.1175/2008JAMC1921.1
  3. Cabrera, V. E., C. W. Fraisse, D. Letson, G. Podesta, and J. Novak, 2006: Impact of climate information on reducing farm risk by optizing crop insurance strategy. Transactions of the ASABE 49(4), 1223-1233. https://doi.org/10.13031/2013.21722
  4. Cocke, S., T. E. LaRow, and D. W. Shin, 2007: Seasonal rainfall predictions over the southeast United States using the Florida State University nested regional spectral model. Journal of Geophysical Research 112, D04106. doi:10.1029/2006JD007535.
  5. Colle, B. A., K. Westrick, and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Weather Forecasting 14, 137-154. https://doi.org/10.1175/1520-0434(1999)014<0137:EOMAEP>2.0.CO;2
  6. Deng, X., J. Huang, F. Qiao, R. L. Naylor, W. P. Falcon, M. Burke, S. Rozelle and D. Battisti, 2010: Impacts of El Nino- Southern Oscillation events on China's rice production. Journal of Geographical Sciences 20(1), 3-16. DOI:10.1007/ s11442-010-0003-6.
  7. Dudhia, J., 1996. A multi-layer soil temperature model for MM5. Preprints, the 6th PSU/NCAR Mesoscale Model Users Workshop, Boulder CO, July, National Center for Atmospheric Research, 49-50.
  8. Florida Division of Forestry, 2005: Florida's Forest Resources Plan Setting the Course for 2030: 1. Present Condition of Florida's Forest Resources, retrieved: January 10, 2010, from: http://www.fl-dof.com/plans_support/ps_pdfs/ FlForestResourcesActionPlan12_2005.pdf
  9. Fowler, H. J., S. Blenkinsop, C. Tebaldi, 2007: Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. International Journal of Climatology 27, 1547-1578. https://doi.org/10.1002/joc.1556
  10. Frei, C., R. Schll, S. Fukutome, J. Schmidli, and P. L. Vidale, 2006: Future change of precipitation extremes in Europe: An intercomparison of scenarios from regional climate models. Journal of Geophysical Research 111, D06105. doi:10.1029/2005JD005965.
  11. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 and 122.
  12. Haerter, J. O., S.Hagemann, C. Moseley, C. Piani, 2011: Climate model bias correction and the role of timescales. Hydrology and Earth System Sciences 15, 1065-1079. DOI: 10.5194/hess-15-1065-2011.
  13. Handler, P., 1990: USA corn yields, the El Nino and agricultural drought: 1867-1988. International Journal of Climatology 10, 819-828. https://doi.org/10.1002/joc.3370100804
  14. Hansen, J. W., A. W. Hodges, and J. W. Jones, 1998: ENSO influences on agriculture in the southeastern United States. Journal of Climate 11, 404-411. https://doi.org/10.1175/1520-0442(1998)011<0404:EIOAIT>2.0.CO;2
  15. Hernandez, J. L., S. Hwang, F. Escobedo, A. H. Davis, and J. W. Jones, 2012: Land use change in central Florida and sensitivity analysis based on agriculture to Urban Extreme conversion. Weather, Climate, and Society 4(3), 200-211. https://doi.org/10.1175/WCAS-D-11-00019.1
  16. Hong, S. Y., and H. L. Pan, 1996: Non-local boundary layer vertical diffusion in a medium-range forecast model. Monthly Weather Review 124, 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  17. Hwang, S., W. Graham, J. S. Geurink, and A. Adams, 2012: Hydrologic implications of errors in dynamically downscaled and bias-corrected climate model predictions. Journal of Hydrology, under review.
  18. Hwang, S., W. Graham, J. L. Hernandez, C. Martinez, J. W. Jones, and A. Adams, 2011: Quantitative Spatiotemporal Evaluation of Dynamically Downscaled MM5 Precipitation Predictions over the Tampa Bay Region, Florida. Journal of Hydrometeorology 12, 1447-1464. doi:10.1175/ 2011JHM1309.1
  19. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph, 1996: The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77(3), 437-470. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  20. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3), NCAR/TN-420 STR, NCAR Technical Note.
  21. Laprise, R., 2008: Regional climate modeling. Journal of Computational Physics 227, 3641-3666. https://doi.org/10.1016/j.jcp.2006.10.024
  22. Lee, S. J., and E. H. Berbery, 2012: Land cover change effects on the climate of the La Plata basin. Journal of Hydrometeorology 13, 84-102. https://doi.org/10.1175/JHM-D-11-021.1
  23. Leung, L. R., A. H. Hamlet, D. P. Lettenmaier, and A. Kumar, 1999: Simulation of the ENSO hydroloclimate signals in the Pacific Northwest Columbia River basin. Bulletin of the American Meteorological Society 80, 2313-2329. https://doi.org/10.1175/1520-0477(1999)080<2313:SOTEHS>2.0.CO;2
  24. Lin, J. L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophysical Research Letters 34, L12702, doi:10.1029/2006GL028937.
  25. Liu, J., C. Men, V. E. Cabrera, S. Uryasev, and C. W. Fraisse, 2008: Optimizing Crop Insurance under Climate Variability. Journal of Applied Meteorology and Climatology 47, 2572-2580. https://doi.org/10.1175/2007JAMC1490.1
  26. Liu, H., M. Zhang, and W. Lin, 2012: An Investigation of the Initial Development of the Double-ITCZ Warm SST Biases in the CCSM. Journal of Climate 25, 140-155. https://doi.org/10.1175/2011JCLI4001.1
  27. Meinke, H., P. Devoil, G. L. Hammer, S. Power, R. Allan, R. C. Stone, C. Folland, and A. Potgieter, 2005: Rainfall Variability at Decadal and Longer Time Scales: Signal or Noise? Journal of Climate 18, 89-96. https://doi.org/10.1175/JCLI-3263.1
  28. Murphy, J., 1999: An evaluation of statistical and dynamical techniques for downscaling local climate. Journal of Climate 12, 2256-2284. https://doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2
  29. Olatinwo, R. O., J. O. Paz, R. C. Kemerait Jr, A. K. Culbreath, and G. Hoogenboom, 2010: El Nino-Southern Oscillation (ENSO): Impact on tomato spotted wilt intensity in peanut and the implication on yield. Crop Protection 29(5), 448-453. https://doi.org/10.1016/j.cropro.2009.10.014
  30. Pal, J. S., F. Giorgi, and X. Bi, 2004: Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophysical Research Letter 31, L13202, doi:10.1029/2004GL019836.
  31. Panofsky, H. A., and G. W. Brier, 1968: Some applications of statistics to meteorology. Pennsylvania State University, University park, PA, USA, 224 pp
  32. Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Nino-Southern Oscillation (ENSO). Monthly Weather Review 114, 2352-2362. https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
  33. Schmidli, J., C. Frei, and P. L. Vidale, 2006: Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology 26, 679-689. https://doi.org/10.1002/joc.1287
  34. Schmidt, N., E. K. Lipp, J. B. Rose, and M. E. Luther, 2001: ENSO Influences on Seasonal Rainfall and River Discharge in Florida. Journal of Climate 14, 615-628. https://doi.org/10.1175/1520-0442(2001)014<0615:EIOSRA>2.0.CO;2
  35. Shin, D. W., J. G. Below, T. E. LaRow, S. Cocke, and J. J. O'Brien, 2006: The Role of an Advanced Land Model in Seasonal Dynamical Downscaling for Crop Model Application. Journal of Applied Meteorology and Climatology 45, 686-701. https://doi.org/10.1175/JAM2366.1
  36. Wood, A.W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62, 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
  37. Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Letternmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research 107, 4429. doi:10.1029/2001JD000659.
  38. Zhang, T., J. Zhu, X. Yang, and X. Zhang, 2008: Correlation changes between rice yields in North and Northwest China and ENSO from 1960 to 2004. Agricultural and Forest Meteorology 148(6-7), 1021-1033. https://doi.org/10.1016/j.agrformet.2008.01.018