DOI QR코드

DOI QR Code

닭의 고밀도 사양체계가 스트레스 및 지방대사 연관 유전자 발현에 미치는 영향

Effects of High Stocking Density on the Expressions of Stress and Lipid Metabolism Associated Genes in the Liver of Chicken

  • 안영숙 (경남과학기술대학교 동물생명과학과) ;
  • 박정근 (경남과학기술대학교 동물생명과학과) ;
  • 장인석 (경남과학기술대학교 동물생명과학과) ;
  • 손시환 (경남과학기술대학교 동물생명과학과) ;
  • 문양수 (경남과학기술대학교 동물생명과학과)
  • An, Young Sook (Department of Animal Science & Biotechnology, Gyeongnam National University of Science & Technology) ;
  • Park, Jeong Geun (Department of Animal Science & Biotechnology, Gyeongnam National University of Science & Technology) ;
  • Jang, In Surk (Department of Animal Science & Biotechnology, Gyeongnam National University of Science & Technology) ;
  • Sohn, Sea Hwan (Department of Animal Science & Biotechnology, Gyeongnam National University of Science & Technology) ;
  • Moon, Yang Soo (Department of Animal Science & Biotechnology, Gyeongnam National University of Science & Technology)
  • 투고 : 2012.10.23
  • 심사 : 2012.12.11
  • 발행 : 2012.12.30

초록

본 연구는 육계에서 고밀도 사양체계가 간의 지놈 전사체, 특히 스트레스 및 지방대사 연관 유전자들의 발현에 어떤 영향을 미치는지 알아보기 위하여 실시하였다. 공시된 시험동물의 대조군 사육밀도는 $495cm^2$/수, 고밀도군은 $245cm^2$/수를 35일령까지 유지하였다. 대조구와 비교하여 고밀도 사양 육계에서 체중, 증체량, 사료섭취량이 유의적(p<0.05)으로 감소되는 것으로 나타났다. 폐사율은 고밀도군에서 15.7%로서 대조군(3.7%)에 비해 폐사율이 4.2배 높았다. 육계의 사육밀도에 따른 스트레스관련 유전자 HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3, ATF4 등의 발현이 증가하였으며, interferon-${\gamma}$, PDCD4 등의 발현은 감소하였다. Endoplasmic reticulum (ER) stress 관련 HSPA5 (GRP78/Bip), DNAJC3 그리고 ATF4은 유전자들은 고밀도 사양계에서 유전자의 발현이 2-3배 증가함을 보였다. 고밀도 사양은 지방산 합성에 관여하는 효소들(ACSL5, TMEM195, ELOVL6)의 유전자 발현증가와 지방산산화(${\beta}$-oxidatin)에 관여하는 효소들(ACAA1, ACOX1, EHHADH, LOC423347, CPT1A)의 RNA 발현 증가를 유도하였다. 본 연구는 밀사에 의한 스트레스가 닭의 간에서 지방을 합성하기 위한 유전자들의 발현을 증가시키고, 합성된 지방산을 분해하여 에너지를 생산하기 위한 지방산의 산화도 높게 유지하고 있음을 보여주었다. 닭의 주요 지방대사기관인 간에서 외부적 환경인자(사육환경)에 의한 스트레스와 생리적 대사(지방대사 및 소포체 스트레스)가 서로 밀접한 관계가 있음을 분자생물학적 수준에서 확인하였다. 따라서 스트레스저감 사육환경제공 및 친환경 사육방법 도입 등 동물복지를 고려한 가금사양체계가 필요한 것으로 사료된다.

The effect of high stocking density (HSD) on the expression of stress and lipid metabolism associated genes in the liver of broiler chickens was examined by chicken genome array analysis. The chickens in a control group were randomly assigned to a $495cm^2/bird$ stocking density, whereas the chickens in a HSD group were arranged in a $245cm^2/bird$ stocking density with feeding ad libitum for 35 days. The chickens assigned to the HSD group had a significantly lower body weight, weight gain, and feed intake compared with those of the control group (p<0.05). The mortality of chickens was higher in the HSD group than in the control group. The microarray analysis indicated up-regulation of stress associated genes such as HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, and down-regulation of interferon-${\gamma}$ and PDCD4 genes. The endoplasmic reticulum stress associated genes, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, were highly expressed in the HSD group. The genes, ACSL5, TMEM195 and ELOVL6, involved in fatty acid synthesis, were elevated in the HSD group. The genes, ACAA1, ACOX1, EHHADH, LOC423347 and CPT1A, related to fatty acid oxidation, were also activated in the HSD group. These results suggest that a HSD rearing system stimulates the genes associated with fatty acid synthesis as well as fatty acid oxidation in the liver of broiler chickens.

키워드

참고문헌

  1. Azad, M. A., Kikusato, M., Maekawa, T., Shirakawa, H. and Toyomizu, M. 2010. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 155, 401-406. https://doi.org/10.1016/j.cbpa.2009.12.011
  2. Azad, M. A., Kikusato, M., Sudo, S., Amo, T. and Toyomizu, M. 2010. Time course of ROS production in skeletal muscle mitochondria from chronic heat-exposed broiler chicken. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 266-271. https://doi.org/10.1016/j.cbpa.2010.07.011
  3. Beigneux, A. P., Vergnes, L., Qiao, X., Quatela, S., Davis, R., Watkins, S. M., Coleman, R. A., Walzem, R. L., Philips, M., Reu,e K. and Young, S. G. 2006. Agpat6-a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47, 734-744. https://doi.org/10.1194/jlr.M500556-JLR200
  4. Bell, M. E., Bhatnagar, S., Liang, J., Soriano, L., Nagy, T. R. and Dallman, M. F. 2000. Voluntary sucrose ingestion, like corticosterone replacement, prevents the metabolic deficits of adrenalectomy. J. Neuroendocrinol. 12, 461-470.
  5. Beloor, J., Kang, H. K., Kim, Y. J., Subramani, V. K., Jang, I. S., Sohn, S. H. and Moon, Y. S. 2010. The effect of stocking density on stress related gene sand telomeric length in broiler chickens. Asian-Auat. J. Anim. Sci. 23, 437-443. https://doi.org/10.5713/ajas.2010.90400
  6. Borradaile, N. M., Han, X., Harp, J. D., Gale, S. E., Ory, D. S. and Schaffer, J. E. 2006. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 47, 2726-2737. https://doi.org/10.1194/jlr.M600299-JLR200
  7. Cai, Y., Song, Z., Zhang, X., Wang, X., Jiao, H. and Lin, H. 2009. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 150, 164-169. https://doi.org/10.1016/j.cbpc.2009.04.005
  8. Cnop, M., Foufelle, F. and Velloso, L. A. 2012. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol. Med. 18, 59-68. https://doi.org/10.1016/j.molmed.2011.07.010
  9. Dong, H., Lin, H., Jiao, H. C., Song, Z. G., Zhao, J. P. and Jiang, K. J. 2007. Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 189-195. https://doi.org/10.1016/j.cbpa.2006.12.034
  10. Gornati, R., Papis, E., Rimoldi, S., Chini, V., Terova, G., Prati, M., Saroglia, M. and Bernardini, G. 2005. Molecular markers for animal biotechnology: sea bass (Dicentrarchus labrax, L.) HMG-CoA reductase mRNA. Gene 344, 299-305. https://doi.org/10.1016/j.gene.2004.11.007
  11. Griffin, H.cD. and Hermier, D. 1988. Plasma lipoprotein metabolism and fattening on poultry. In Leclercq, B. and Whitehead, C. C. (eds.), pp. 175-201, Leanness in Domestic Birds. Butterworths, London, U.K.
  12. Jiang, K. J., Jiao, H. C., Song, Z. G., Yuan, L., Zhao, J. P. and Lin, H. 2008. Corticosterone administration and dietary glucose supplementation enhance fat accumulation in broiler chickens. Br. Poult. Sci. 49, 625-631. https://doi.org/10.1080/00071660802337241
  13. Kang, M., Ahn, H. S., Lee, J. Y., Matsuhashi, S. and Park, W, Y. 2002. Up-regulation of PDCD4 in senescent human diploid fibroblasts. Biochem. Biophys. Res. Comm. 293, 617-621. https://doi.org/10.1016/S0006-291X(02)00264-4
  14. Kong, B. W., Song, J. J., Lee, J. Y., Hargis, B. M., Wing, T., Lassiter, K. and Bottje, W. 2011. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult. Sci. 90, 2535-2547. https://doi.org/10.3382/ps.2011-01435
  15. Li, C., Wang, X., Wang, G., Li, N. and Wu, C. 2011. Expression analysis of global gene response to chronic heat exposure in broiler chickens (Gallus gallus) reveals new reactive genes. Poult. Sci. 90, 1028-1036. https://doi.org/10.3382/ps.2010-01144
  16. Lin, H., Sui, S. J., Jiao, H. C., Buyse, J. and Decuypere, E. 2006. Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 143, 400-405. https://doi.org/10.1016/j.cbpa.2005.12.030
  17. Lin, H., Decuypere, E. and Buyse, J. 2004. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus) 1. Chronic exposure. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 737-744. https://doi.org/10.1016/j.cbpc.2004.09.013
  18. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  19. Lu, Q., Wen, J. and Zhang, H. 2007. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult Sci. 86, 1059-1064. https://doi.org/10.1093/ps/86.6.1059
  20. Matteri, R. L., Carroll, J. A. and Dryer, C. J. 2000. Neuroendocrine responses to stress. In Moberg, G. P. and Mench, J. A. (eds.), pp. 43-76, The biology of animal stress. CAB International, Wallingford.
  21. Rebuffé-Scrive, M., Walsh, U. A., McEwen, B. and Rodin, J. 1992. Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiol. Behav. 52, 583-590. https://doi.org/10.1016/0031-9384(92)90351-2
  22. SAS. 1996. User's Guide: Statistics Version 6.12 Ed. SAS Inst., Inc., Cary, NC.
  23. Schoenborn, J. R. and Wilson, C. B. 2007. Regulation of interferon- gamma during innate and adaptive immune responses. Adv. Immunol. 96, 41-101. https://doi.org/10.1016/S0065-2776(07)96002-2
  24. Sharma, N. K., Das, S. K., Mondal, A. K., Hackney, O, G., Chu, W. S., Kern, P. A., Rasouli, N., Spencer, H. J., Yao-Borengasser, A. and Elbein, S. C. 2008. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J. Clin. Endocrinol. Metab. 93, 4532-4541. https://doi.org/10.1210/jc.2008-1001
  25. Sherlock, L., Wathes, C. M., Cheng, Z. and Wathes, D. C. 2012. Differential hepatic gene expression in the broiler chicken in response to the combined stressors of food withdrawal, catching and transport at the end of production. Stress 15, 293-305.
  26. Singh, P., Marikkannu, R., Bitomsky, N. and Klempnauer, K. H. 2009. Disruption of the Pdcd4 tumor suppressor gene in chicken DT40 cells reveals its role in the DNA-damage response. Oncogene 28, 3758-3764. https://doi.org/10.1038/onc.2009.239
  27. Sohn, S. H., Subramani, V. K., Moon, Y. S. and Jang, I. S. 2012. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens. Poult Sci. 91, 829-836. https://doi.org/10.3382/ps.2011-01904
  28. Yang, L., Tan, G. Y., Fu, Y. Q., Feng, J. H. and Zhang, M. H. 2010. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151, 204-208. https://doi.org/10.1016/j.cbpc.2009.10.010
  29. Yuan, L., Lin, H., Jiang, K. J., Jiao, H. C. and Song, Z. G. 2008. Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens. Br. Poult Sci. 49, 487-495. https://doi.org/10.1080/00071660802251731
  30. Zager, R. A. and Johnson, A. 2001. Renal cortical cholesterol accumulation is an integral component of the systemic stress response. Kidney Int. 60, 2299-2310. https://doi.org/10.1046/j.1523-1755.2001.00071.x

피인용 문헌

  1. The Effect of Stocking Density and Strain on the Performance and Physiological Adaptive Responses in Broiler Chickens vol.41, pp.3, 2014, https://doi.org/10.5536/KJPS.2014.41.3.205