DOI QR코드

DOI QR Code

Insulin-like Growth Factor-I Induces Plectin and MACF1 Expression in C2C12 Myotubes

C2C12 myotube에서 insulin-like growth factor-I이 plectin과 MACF1 발현에 미치는 영향

  • Kim, Hye Jin (Department of Exercise Science, College of Health Sciences, Ewha Womans University) ;
  • Hwang, Ji Sun (Department of Exercise Science, College of Health Sciences, Ewha Womans University) ;
  • Kwak, Yi-Sub (Department of Physical Education, College of Sport Science, Dong-Eui University) ;
  • Lee, Won Jun (Department of Exercise Science, College of Health Sciences, Ewha Womans University)
  • 김혜진 (이화여자대학교 건강과학대학 체육과학과) ;
  • 황지선 (이화여자대학교 건강과학대학 체육과학과) ;
  • 곽이섭 (동의대학교 체육과학대학 체육학과) ;
  • 이원준 (이화여자대학교 건강과학대학 체육과학과)
  • Received : 2012.10.19
  • Accepted : 2012.12.05
  • Published : 2012.12.30

Abstract

Plectin and microtubule actin cross-linking factor 1 (MACF1) are architectural proteins that contribute to the function of skeletal muscle as generators of mechanical force. However, the influence of insulin- like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on plectin and MACF1 in skeletal muscle cells has not been demonstrated. The effect of IGF-I on plectin and MACF1 gene expression was investigated by treating differentiated C2C12 murine skeletal muscle cells with 20 ng/ml of IGF-I at different time points. The IGF-I treatment increased plectin protein expression in a dose-dependent manner. The mRNA level of plectin was measured by real-time quantitative PCR to determine if plectin induction was regulated pretranslationally. IGF-I treatment resulted in a very rapid induction of plectin mRNA transcript in C2C12 myotubes. Plectin mRNA increased by 140 and 180% after 24 and 48 hours of IGF-I treatment, respectively, and returned to the control level after 72 hours of IGF-I treatment. MACF1 mRNA increased 86 and 90% after 24 and 48 hours of IGF-I treat-ment, respectively, and returned to the control level after 72 hours of IGF-I treatment. These results suggested that the plectin gene is regulated pretranslationally by IGF-I in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the plectin and MACF1 genes in C2C12 skeletal muscle cells and has modulating effects on a cytolinker protein as well as on contractile proteins.

본 연구에서는 C2C12 근육 세포에서 IGF-I이 세포골격 연결 단백질인 plectin과 MACF1 유전자 발현에 미치는 영향에 대해 알아보았다. 그 결과 IGF-I이 plectin 유전자의 단백질과 mRNA 발현을 증가시켰으며, MACF1 mRNA 발현을 증가시켰음을 알 수 있었다. 이는 운동에 의해 근육에서 분비가 증가하는 IGF-I이 근육 관련 유전자들의 발현을 조절하여 근부피 유지에 영향을 미친다는 기존의 연구 결과들에서 더 나아가 골격근 구조 안정화 및 근수축 기전에 기여하는 plectin과 MACF1 유전자 발현에도 영향을 미친다는 사실을 증명하였다는데 의의가 있다고 사료된다. 향후 근수축 기전에 있어, 운동 형태, 근섬유의 종류에 따른 세포 골격 단백질의 역할 규명 및 조절자에 관한 연구가 더 수행된다면 운동이 골격근의 생리적 변화에 미치는 영향에 대한 추가적 정보를 제공할 수 있을 것이다.

Keywords

References

  1. Andrä, K., Lassmann, H., Bittner, R., Shorny, S., Fässler, R., Propst, F. and Wiche, G. 1997. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 11, 3143-3156. https://doi.org/10.1101/gad.11.23.3143
  2. Banks, G. B., Fuhrer, C., Adams, M. E. and Froehner, S. C. 2003. The postsynaptic submembrane machinery at the neuromuscular junction: requirement for rapsyn and the utrophin/dystrophin-associated complex. J. Neurocytol. 32, 709-726. https://doi.org/10.1023/B:NEUR.0000020619.24681.2b
  3. Booth, F. 2006. The many flavors of IGF-I. J. Appl. Physiol. 100, 1755-1756. https://doi.org/10.1152/japplphysiol.00205.2006
  4. Boyer, J. G., Bernstein, M. A. and Boudreau-Larivière, C. 2010. Plakins in striated muscle. Muscle Nerve. 41, 299-308. https://doi.org/10.1002/mus.21472
  5. Capetanaki, Y., Bloch, R. J., Kouloumenta, A., Mavroidis, M. and Psarras, S. 2007. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp. Cell. Res. 313, 2063-2076. https://doi.org/10.1016/j.yexcr.2007.03.033
  6. Leung, C. L., Green, K. J. and Liem, R. K. 2002. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37-45. https://doi.org/10.1016/S0962-8924(01)02180-8
  7. Florini, J. R., Ewton, D. Z. and Coolican, S. A. 1996. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr. Rev. 17, 481-517.
  8. Foisner, R. and Wiche, G. 1991. Intermediate filament-associated proteins. Curr. Opin. Cell Biol. 3, 75-81. https://doi.org/10.1016/0955-0674(91)90168-X
  9. Fuchs, E. and Cleveland, D. W. 1998. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514-519. https://doi.org/10.1126/science.279.5350.514
  10. Gache, Y., Chavanas, S., Lacour, J. P., Wiche, G., Owaribe, K., Meneguzzi, G. and Ortonne, J. P. 1996. Defective expression of plectin/HD1 in epidermolysis bullosa simplex with muscular dystrophy. J. Clin. Invest. 97, 2289-2298. https://doi.org/10.1172/JCI118671
  11. Galvin, C. D., Hardiman, O. and Nolan, C. M. 2003. IGF-1 receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol. Cell Endocrinol. 200, 19-29. https://doi.org/10.1016/S0303-7207(02)00420-3
  12. Gregor, M., Zeöld, A., Oehler, S., Marobela, K. A., Fuchs, P., Weigel, G., Hardie, D. G. and Wiche, G. 2006. Plectin scaffolds recruit energy-controlling AMP-activated protein kinase (AMPK) in differentiated myofibres. J. Cell Sci. 119, 1864-1875. https://doi.org/10.1242/jcs.02891
  13. Gregory, S. L. and Brown, N. H. 1998. Kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J. Cell Biol. 143, 1271-1282. https://doi.org/10.1083/jcb.143.5.1271
  14. Hijikata, T., Murakami, T., Imamura, M., Fujimaki, N. and Ishikawa, H. 1999. Plectin is a linker of intermediate filaments to Z-discs in skeletal muscle fibers. J. Cell Sci. 112, 867-876.
  15. Hnia, K., Tronchère, H., Tomczak, K. K., Amoasii, L., Schultz, P., Beggs, A. H., Payrastre, B., Mandel, J. L. and Laporte, J. 2011. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J. Clin. Invest. 121, 70-85. https://doi.org/10.1172/JCI44021
  16. Janmey, P. A. 1998. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 78, 763-781.
  17. Kim, S. and Coulombe, P. A. 2007. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581-1597. https://doi.org/10.1101/gad.1552107
  18. Konieczny, P., Fuchs, P., Reipert, S., Kunz, W. S., Zeöld, A., Fischer, I., Paulin, D., Schröder, R. and Wiche, G. 2008. Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J. Cell Biol. 181, 667-681. https://doi.org/10.1083/jcb.200711058
  19. Kostka, T., Patricot, M. C., Mathian, B., Lacour, J. R. and Bonnefoy, M. 2003. Anabolic and catabolic hormonal responses to experimental two-set low-volume resistance exercise in sedentary and active elderly people. Aging. Clin. Exp. Res. 15, 123-130. https://doi.org/10.1007/BF03324489
  20. Leung, C. L., Sun, D., Zheng, M., Knowles, D. R. and Liem, R. K. 1999. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J. Cell Biol. 147, 1275-1286. https://doi.org/10.1083/jcb.147.6.1275
  21. Lin, C. M., Chen, H. J., Leung, C. L., Parry, D. A. and Liem, R. K. 2005. Microtubule actin crosslinking factor 1b: A novel plakin that localizes to the Golgi complex. J. Cell Sci. 118, 3727-3738. https://doi.org/10.1242/jcs.02510
  22. Liu, H., Niu, A., Chen, S. E. and Li, Y. P. 2011. {beta}3-Integrin mediates satellite cell differentiation in regenerating mouse muscle. FASEB J. 25, 1914-1921. https://doi.org/10.1096/fj.10-170449
  23. McLean, W. H., Pulkkinen, L., Smith, F. J., Rugg, E. L., Lane, E. B., Bullrich, F., Burgeson, R. E., Amano, S., Hudson, D. L., Owaribe, K., McGrath, J. A., McMillan, J. R., Eady, R. A., Leigh, I. M., Christiano, A. M. and Uitto, J. 1996. Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. Genes Dev. 10, 724-735.
  24. O'Neill, A., Williams, M. W., Resneck, W. G., Milner, D. J., Capetanaki, Y. and Bloch, R. J. 2002. Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres. Mol. Biol. Cell 13, 2347-2359. https://doi.org/10.1091/mbc.01-12-0576
  25. Toivola, D. M., Tao, G. Z., Habtezion, A., Liao, J. and Omary, M. B. 2005. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15, 608-617. https://doi.org/10.1016/j.tcb.2005.09.004
  26. Vasioukhin, V. and Fuchs, E. 2001. Actin dynamics and cell-cell adhesion in epithelia. Curr. Opin. Cell. Biol. 13, 76-84. https://doi.org/10.1016/S0955-0674(00)00177-0
  27. Vita, G., Monici, M. C., Owaribe, K. and Messina, C. 2003. Expression of plectin in muscle fibers with cytoarchitectural abnormalities. Neuromuscul Disord. 13, 485-492. https://doi.org/10.1016/S0960-8966(03)00037-3
  28. Wallace, J. D., Cuneo, R. C., Baxter, R., Orskov, H., Keay, N., Pentecost, C., Dall, R., Rosén, T., Jørgensen, J. O., Cittadini, A., Longobardi, S., Sacca, L., Christiansen, J. S., Bengtsson, B. A. and Sönksen, P. H. 1999. Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. J. Clin. Endocrinol. Metab. 84, 3591-3601. https://doi.org/10.1210/jc.84.10.3591
  29. Wang, H. V., Chang, L. W., Brixius, K., Wickström, S. A., Montanez, E., Thievessen, I., Schwander, M., Müller, U., Bloch, W., Mayer, U. and Fässler, R. 2008. Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. J. Cell Biol. 180, 1037-1049. https://doi.org/10.1083/jcb.200707175
  30. Wiche, G. 1998. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111, 2477-2486.