DOI QR코드

DOI QR Code

Polymorphisms and Allele Distribution of Novel Indel Markers in Jeju Black Cattle, Hanwoo and Imported Cattle Breeds

제주흑우, 한우 및 수입 소 품종에서 새로운 indel 마커의 다형성과 대립인자 분포

  • Han, Sang-Hyun (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Kim, Jae-Hwan (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Cho, In-Cheol (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Cho, Sang-Rae (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Cho, Won-Mo (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Kim, Sang-Geum (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Kim, Yoo-Kyung (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Kang, Yong-Jun (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Park, Yong-Sang (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA) ;
  • Kim, Young-Hoon (Institute for Livestock Promotion) ;
  • Park, Se-Phil (Mirae Biotech. Co./Jeju National University Stem Cell Research Center) ;
  • Kim, Eun-Young (Mirae Biotech. Co./Jeju National University Stem Cell Research Center) ;
  • Lee, Sung-Soo (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Ko, Moon-Suck (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA)
  • 한상현 (국립축산과학원 난지축산시험장) ;
  • 김재환 (국립축산과학원 가축유전자원시험장) ;
  • 조인철 (국립축산과학원 난지축산시험장) ;
  • 조상래 (국립축산과학원 난지축산시험장) ;
  • 조원모 (국립축산과학원 난지축산시험장) ;
  • 김상금 (국립축산과학원 난지축산시험장) ;
  • 김유경 (국립축산과학원 난지축산시험장) ;
  • 강용준 (국립축산과학원 난지축산시험장) ;
  • 박용상 (국립축산과학원 난지축산시험장) ;
  • 김영훈 (제주도 축산진흥원) ;
  • 박세필 (미래생명공학연구소/제주대학교 줄기세포연구센터) ;
  • 김은영 (미래생명공학연구소/제주대학교 줄기세포연구센터) ;
  • 이성수 (국립축산과학원 바이오공학과) ;
  • 고문석 (국립축산과학원 난지축산시험장)
  • Received : 2012.10.17
  • Accepted : 2012.12.20
  • Published : 2012.12.30

Abstract

The aim of this study was to screen the polymorphisms and distribution of each genotype of insertion/ deletion (indel) markers which were found in a preliminary comparative study of bovine genomic sequence databases. Comparative bioinformatic analyses were first performed between the nucleotide sequences of Bovine Genome Project and those of expressed sequence tag (EST) database, and a total of fifty-one species of indel markers were screened. Of these, forty-two indel markers were evaluated, and nine informative indel markers were ultimately selected for population analysis. Nucleotide sequences of each marker were re-sequenced and their polymorphic patterns were typed in six cattle breeds: Holstein, Angus, Charolais, Hereford, and two Korean native cattle breeds (Hanwoo and Jeju Black cattle). Cattle breeds tested in this study showed polymorphic patterns in eight indel markers but not in the Indel-15 marker in Charolais and Holstein. The results of analysis for Jeju Black cattle (JBC) population indicated an observed heterozygosity (Ho) that was highest in HW_G1 (0.600) and the lowest in Indel_29 (0.274). The PIC value was the highest in HW_G4 (0.373) and lowest in Indel_6 (0.305). These polymorphic indel markers will be useful in supplying genetic information for parentage tests and traceability and to develop a molecular breeding system for improvement of animal production in cattle breeds as well as in the JBC population.

본 연구는 소 유전자 database들에 대한 사전 비교연구에서 발견된 삽입/결실(indel) marker들의 다형성과 각각의 유전자형의 분포를 확인하고자 수행하였다. 먼저, 소의 유전체 서열과 발현서열표식(EST) database 간의 생물정보학적 비교를 통해 전체 51 종의 indel marker들을 검출하였다. 이 중에서 42 종을 평가하여 최종적으로 9 종의 정보력이 있는 marker들을 집단분석을 위해 선발하였다. 각각의 marker들에 대한 염기서열을 재분석하였으며, marker의 다형성을 한국 재래소 품종인 한우와 제주흑우(JBC), Holstein, Angus, Charolais, Hereford 등 6 품종에서 조사하였다. 본 연구에서 이용한 소 6 품종은 8 종의 marker들에 대해 다형성을 나타내었으나, Indel_15의 경우 Holstein과 Charolais에서 다형성이 발견되지 않았다. JBC 집단에 대한 분석에서는 관찰된 이형접합자 빈도는 HW_G1 (0.600)에서 가장 높고, Indel_29 (0.274)에서 가장 낮았다. Marker에 대한 다형정보량의 수준은 HW_G4 (0.373)에서 가장 높고, Indel_6 (0.305)에서 가장 낮은 수준을 보였다. 본 연구에서 조사한 새로운 indel marker들은 특히 제주흑우 집단의 생산성 향상을 위한 분자육종 체계의 개발뿐만 아니라 친자확인이나 생산이력추적을 위한 유전정보를 제공하는데 유용할 것으로 기대된다.

Keywords

References

  1. Arranz, J. J., Bayon, Y. and San Primitivo, F. 1996. Comparison of protein markers and microsatellites in differentiation of cattle populations. Anim. Genet. 27, 415-419.
  2. Borsting, C. and Morling, N. 2011. Mutations and/or close relatives? Six case work examples where 49 autosomal SNPs were used as supplementary markers. Forensic Sci. Int. Genet. 2, 198-204.
  3. Brinkmann, B., Klintschar, M., Neuhuber, F., Huhne, J. and Rolf, B. 1998. Mutation rate in human microsatellites: influence of the structure and length og the tandem repeat. Am. J. Hum. Genet. 62, 1408-1415. https://doi.org/10.1086/301869
  4. Chen, C., Zhou, Z., Li, M., Qu, M., Ma, Q., Zhong, M., Zhang, Y. and Yu, Z. 2012a. Presenilin-2 polymorphisms and risk of sporadic AD: Evidence from a meta-analysis. Gene 503, 194-199. https://doi.org/10.1016/j.gene.2012.05.005
  5. Chen, Z., Li, X., Tang, B., Wang, J., Shi, Y., Sun, Z., Zhang, L., Pan, Q., Xia, K. and Jiang, H. 2012b. Spinocerebellar ataxia type 27 (SCA27) is an uncommon cause of dominant ataxia among Chinese Han population. Neurosci. Lett. 520, 16-19. https://doi.org/10.1016/j.neulet.2012.05.008
  6. Cho, G. J., Yang, Y. J. and Kim, B. H. 2003. A case of parentage testing in the thoroughbred horse by microsatellite typing. Kor. J. Vet. Res. 43, 25-30.
  7. Collins, F. S., Drumm, M. L., Cole, J. L., Lockwood, W. K., Vande Woude G. F. and Iannuzzi, M. C. 1987. Construction of a general human chromosome jumping library, with application to cystic fibrosis. Science 235, 1046-1049. https://doi.org/10.1126/science.2950591
  8. Daniels, J., Holmans, P., Williams, N., Turic, D., McGuffin, P., Plomin, R. and Owen, M. J. 1998. A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am. J. Hum. Genet. 62, 1189-1197. https://doi.org/10.1086/301816
  9. Demers, D. B., Curry, E. T., Egholm, M. and Sozer, A. C. 1995. Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucleic Acids Res. 23, 3050-3055. https://doi.org/10.1093/nar/23.15.3050
  10. Garay, J., Bravo, J. C., Correa, P. and Schneider, B. G. 2004. Infrequency of microsatellite instability in complete and incomplete gastric intestinal metaplasia. Hum. Pathol. 35:, 102-106. https://doi.org/10.1016/j.humpath.2003.08.023
  11. Han, S. H., Ko, J. C., Kim, Y. H., Kim, N. Y., Kim, J. H., Ko, M. S., Jeong, H. Y., Cho, I. C., Yang, Y. H. and Lee, S. S. 2012. Verification of ET and AI derived offspring using on the genetic polymorphisms of microsatellite and coat color related genes in Jeju Black cattle. J. Life Sci. 20, 381-387. https://doi.org/10.5352/JLS.2010.20.3.381
  12. Huang, L., Xiao, X., Li, S., Jia, X., Wang, P., Guo, X. and Zhang, Q. 2012. CRX variants in cone-rod dystrophy and mutation overview. Biochem. Biophys. Res. Commun. 426, 498-503. https://doi.org/10.1016/j.bbrc.2012.08.110
  13. Ji, H., Kim, E., Lee, K., Kang, T., Lee, J., Shin, H., Kim, L. and Yun, Y. 2007. Beagle dogs parentage testing by using 22 ISAG microsatellite markers. Kor. J. Vet. Res. 47, 457-460.
  14. Kalinowski, S. T., Taper, M. L. and Marshall, T. C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  15. Kersbergen, P., van Eede, P. H., Kraaijenbrink, T., Lardy, N. M., Sijen, T., Bakker, E. and de Knijff, P. 2008. "False positive" or true paternity: Investigating one or two STR mismatches by detailed SNP analyses. Forensic Sci. Int. Genet. Suppl. Series 1, 518-519. https://doi.org/10.1016/j.fsigss.2007.10.106
  16. Kim, M. J., Li, G. H., Oh, J. D., Cho, K. H., Jeon, G. J. Choi, B. H., Lee, J. H., Hong, Y. S., Kong, H. S. and Lee, H. K. 2007. Characterization of a Korean traditional porcine breed using microsatellite markers and establishment of an individual identification system. Kor. J. Food Sci. Ani. Resour. 27, 150-156. https://doi.org/10.5851/kosfa.2007.27.2.150
  17. Kim, R. N., Kim, A., Kim, D., Choi, S. H., Kim, D., Nam, S., Kang, A., Kim, M., Park, K., Yoon, B., Lee, K. S. and Park, H. 2012. Analysis of indel variations in the humn disease- associated genes CDKN2AIP, WDR66, USP20 and OR7C2 in a Korean population. J. Genet. 91, e1-e11. https://doi.org/10.1007/s12041-012-0125-y
  18. Kim, T. H., Yoon, D. H., Lee, H. S., Cheong, I. C. and Jo, J. K. 1997. Analysis of D-loop region sequences in mitochondrial genome of Korean native pig. Kor. J. Anim. Sci. Technol. 39, 215-224.
  19. Lee, S. S., Yang, B. S., Yang, Y. H., Kang, S. Y., Ko, S. B., Jung, J. K., Oh, W. Y., Oh, S. J. and Kim, K. I. 2002. Analysis of melanocortin receptor 1 (MC1R) genotype in Korean Bridle cattle and Korean cattle with dark muzzle. Kor. J. Anim. Sci. Technol. 44, 23-30. https://doi.org/10.5187/JAST.2002.44.1.023
  20. Lee, S. S., Yang, Y. H., Kang, S. Y., Oh, W. Y, Yang, B. S., Ko, S. B., Oh, S. J. and Kim, K. I. 2000. Comparison of the genotype and frequencies of MSH receptor (MC1R) gene in Korean cattle, Cheju native black cattle, Japanese black and Japanese brown cattle. Kor. J. Anim. Sci. Technol. 42, 253-260.
  21. Levinson, G. and Gutman, G. A. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203-221.
  22. Lim, H. T., Min, H. S., Moon, W. G., Lee, J. B., Kim, J. M., Cho, I. C., Lee, H. K., Lee, Y. W., Lee, J. G. and Jeon, J. T. 2005. Analysis and selection of microsatellite markers for individual traceability system in Hanwoo. Kor. J. Anim. Sci. Technol. 47, 491-500. https://doi.org/10.5187/JAST.2005.47.4.491
  23. Mannen, H., Tsuji, S., Mukai, F., Goto, N. and Ohtagaki, S. 1993. Genetic similarity using DNA fingerprinting in cattle to determine relationship coefficient. J. Hered. 84, 166-169.
  24. Oh, J. D., Kong, H. S., Lee, J. H., Moon, S. J., Jeon, G. J. and Lee, H. K. 2007. The genetic relationship between regional population of Hanwoo brands (Korean Cattle) using microsatellite markers. Kor. J. Food Sci. Ani. Resour. 27, 357-362. https://doi.org/10.5851/kosfa.2007.27.3.357
  25. Ostertag, E. M. and Kazazian, Jr. H. H. 2001. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501-538. https://doi.org/10.1146/annurev.genet.35.102401.091032
  26. Pereira, R., Phillips, C., Alves, C., Amorim, A., Carracedo, Á. and Gusmão, L. 2009. Insertion/deletion polymorphisms: A multiplex assay and forensic applications. Forensic Sci. Int. Genet. Suppl. Series 2, 513-515. https://doi.org/10.1016/j.fsigss.2009.09.005
  27. Phillips, C., Fondevila, M., García-Magariños, M., Rodriguez, A., Salas, A., Carracedo, A. and Lareu, M. V. 2008. Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci. Int. Genet. 2, 198-204. https://doi.org/10.1016/j.fsigen.2008.02.002
  28. Pinto, N., Magalhaes, M., Conde-Sousa, E., Gomes, C., Pereira, R., Alves C., Gusmao, L. and Amorim, A. 2012. Assessing paternities with inconclusive STR results: The suitability of bi-allelic markers. Forensic Sci. Int. Genet. in press.
  29. Poetsch, M., Ludcke, C., Repenning, A., Fischer, L., Malyusz, V., Simeoni, E., Lignitz, E., Oehmichen, M. and von Wurmb-Schwark, N. 2006. The problem of single parent/ child paternity analysis-Practical results involving 336 children and 348 unrelated men. Forensic Sci. Int. 159, 98-103. https://doi.org/10.1016/j.forsciint.2005.07.001
  30. Rozen, S. and Skaletsky, H. J. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz, S. and Misener, S. (eds.), Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365-386.
  31. Sambrook, J., Fritsch, E. F. and Manniatis, T. 1989. Molecular cloning: a laboratory mannual. 2nd Ed. Cold Spring Harbor Laboratory.
  32. Warren, S. T., Zhang, F., Licameli, G. R. and Peters, J. F. 1987. The fragile X site in somatic cell hybrids: an approach for molecular cloning of fragile sites. Science 237, 420-423. https://doi.org/10.1126/science.3603029
  33. Wolff, R. K., Plaetke, R., Jeffreys, A. J. and White, R. 1989. Unequal crossing over between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5, 382-384. https://doi.org/10.1016/0888-7543(89)90076-1
  34. Yoon, D., Park, E. W., Cho, Y. M., Cheong, I. C. and Lim, S. K. 2007. Allele frequency of the bovine Y-chromosome microsatellite locus in the cattle breeds. Kor. J. Anim. Sci. Technol. 49, 429-436. https://doi.org/10.5187/JAST.2007.49.4.429
  35. Yoon, D., Lee, H. K., Oh, S. J., Hong, K. C., Jeon, G. J., Kong, H. S. and Lee, J. H. 2005. Genetic relationships of cattle breeds assessed by PCR-RFLP of the bovine mitochondrial DNA D-loop region. Asian-Aust. J. Anim. Sci. 18, 1368-1374. https://doi.org/10.5713/ajas.2005.1368

Cited by

  1. PCR Technique for Determining Jeju Black Cattle, Hanwoo and Imported Beef vol.24, pp.8, 2014, https://doi.org/10.5352/JLS.2014.24.8.910