DOI QR코드

DOI QR Code

일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO

  • 이선화 (광주과학기술원 광공학응용물리학과) ;
  • 최승목 (광주과학기술원 신소재공학부) ;
  • 김원배 (광주과학기술원 신소재공학부)
  • Lee, Seonhwa (Department of Photonics and Applied Physics, Gwangju Institute of Science and Technology) ;
  • Choi, Sung Mook (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Won Bae (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2012.10.29
  • 심사 : 2012.11.21
  • 발행 : 2012.12.31

초록

백금(Pt)과 루테늄(Ru)의 조성비가 일산화탄소(CO) 산화반응에 미치는 영향을 조사하고자 탄소를 지지체(support)로 사용한 20 wt% 백금과 백금-루테늄 시리즈 촉매(Pt : Ru = 7 : 3, 5 : 5, 3 : 7)를 콜로이드 방법(colloidal method)으로 합성하였다. 다양한 물리 화학적 분석장비인 투과전자현미경(transmission electron microscopy, TEM)과 X-선 회절(X-ray diffraction, XRD), 에너지 분산형 X-선 분석기(energy dispersive X-ray spectroscopy, EDS)를 이용하여 구조 화학적 특성을 분석하고, X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)을 통해 전자적 특성 변화를 확인하였다. 더불어 일산화탄소 벗김 전압전류실험(CO stripping voltammetry)을 이용하여 전기화학적 거동을 분석하였다. 합성된 촉매들 중 $Pt_5Ru_5/C$가 가장 낮은 개시 전위(vs. Ag/AgCl)와 가장 큰 일산화탄소의 전기화학적 활성화 표면적(CO EAS) 값을 나타냈으며 이를 통해 $Pt_5Ru_5/C$이 일산화탄소의 전기화학적 산화반응에 있어 가장 효과적인 촉매임을 확인하였다. $Pt_5Ru_5/C$의 격자상수 변화를 통한 구조적 특성변화 및 백금 d-밴드의 페르미 레벨 변화를 통한 전자적 특성변화 그리고 이작용기(bifunctional)의 효과가 일산화탄소의 전기화학적 산화반응에 대한 활성을 증진시켰다고 사료된다.

The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

키워드

참고문헌

  1. Winter, M., and Brodd, R. J., "What are Batteries, Fuel Cells, and Supercapacitors?," Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
  2. Almeida, T. S., Kokoh, K. B., and De Andrade, A. R., "Effect of Ni on Pt/C and PtSn/C Prepared by the Pechini Method," Int. J. Hydrogen Energy, 36, 3803-3810 (2011). https://doi.org/10.1016/j.ijhydene.2010.12.066
  3. Kordesch, K. V., and Simader, G. R., "Environmental Impact of Fuel Cell Technology," Chem. Rev., 95, 191-207 (1995). https://doi.org/10.1021/cr00033a007
  4. Brown, L. F., "A Comparative Study of Fuels for On-board Hydrogen Production for Fuel-Cell-Powered Automobiles," Int. J. Hydrogen Energy, 26, 381-397 (2001). https://doi.org/10.1016/S0360-3199(00)00092-6
  5. Wootsch, A., Descorme, C., and Duprez, D., "Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Ceriae-zirconia and Alumina-Supported Pt Catalysts," J. Catal., 225, 259-266 (2004). https://doi.org/10.1016/j.jcat.2004.04.017
  6. Lindstrom, B., and Pettersson, L. J., "Development of a Methanol Fuelled Reformer for Fuel Cell Applications," J. Power Sources, 118, 71-78 (2003). https://doi.org/10.1016/S0378-7753(03)00064-8
  7. Kim, W. B., Voitl, T., Rodriguez-Rivera, G. J., and Dumesic, J. A., "Powering Fuel Cells with CO via Aqueous Polyoxometalates and Gold Catalysts," Science, 305, 1280-1283 (2004). https://doi.org/10.1126/science.1100860
  8. Galvita, V., and Sundmacher, K., "Cyclic Water Gas Shift Reactor (CWGS) for Carbon Monoxide Removal from Hydrogen Feed Gas for PEM Fuel Cells," Chem. Eng. J., 134, 168-174 (2007). https://doi.org/10.1016/j.cej.2007.03.046
  9. Papageorgopoulos, D. C., Keijzer, M., and De Bruijn, F. A., "The Inclusion of Mo, Nb and Ta in Pt and PtRu Carbon Supported Electrocatalysts in the Quest for Improved CO Tolerant PEMFC Anodes," Electrochim. Acta, 48, 197-204 (2002). https://doi.org/10.1016/S0013-4686(02)00602-3
  10. Liang, Y., Zhang, H., Zhong, H., Zhu, X., Tian, Z., Xu, D., and Yi, B., "Preparation and Characterization of Carbon-Supported PtRuIr Catalyst with Excellent CO-Tolerant Performance for Proton-Exchange Membrane Fuel Cells," J. Catal., 238, 468-476 (2006). https://doi.org/10.1016/j.jcat.2006.01.005
  11. Choi, S. M., Seo, M. H., Kim, H. J., Lim, E. J., and Kim, W. B., "Effect of Polyoxometalate Amount Deposited on Pt/C Electrocatalysts for CO Tolerant Electrooxidation of H2 in Polymer Electrolyte Fuel Cells," Int. J. Hydrogen Energy, 35, 6853-6862 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.020
  12. Pereira, L. G. S., Santos, F. R., Pereira, M. E., Paganin, V. A., and Ticianelli, E. A., "CO Tolerance Effects of Tungsten- Based PEMFC Anodes," Electrochim. Acta, 51, 4061-4066 (2006). https://doi.org/10.1016/j.electacta.2005.11.025
  13. Kim, J. H., Choi, S. M., Nam, S. H., Seo, M. H., Choi, S. H., and Kim, W. B., "Influence of Sn Content on PtSn/C Catalysts for Electrooxidation of C1-C3 Alcohols: Synthesis, Characterization, and Electrocatalytic Activity," Appl. Catal. B: Environ., 82, 89-102 (2008).
  14. Watanabe, M., and Motoo, S., "Electrocatalysis by Ad-atoms part I. Enhancement of the Oxidation of Methanol on Platinum and Palladium by Gold Ad-atoms," J. Electroanal. Chem., 60, 259-266 (1975). https://doi.org/10.1016/S0022-0728(75)80260-9
  15. Watanabe, M., and Motoo, S., "Electrocatalysis by Ad-atoms part II. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-atoms," J. Electroanal. Chem., 60, 267- 273 (1975). https://doi.org/10.1016/S0022-0728(75)80261-0
  16. Watanabe, M., and Motoo, S., "Electrocatalysis by Ad-atoms part III. Enhancement of the Oxidation of Carbon Monoxide on Platinum by Ruthenium Ad-atoms," J. Electroanal. Chem., 60, 275-283 (1975). https://doi.org/10.1016/S0022-0728(75)80262-2
  17. Mongeot, F. B., Scherer, M., Gleich, B., Kopatzki, E., and Behm, R. J., "CO Adsorption and Oxidation on Bimetallic Pt/ Ru(0001) Surfaces-a Combined STM and TPD/TPR Study," Surf. Sci., 411, 249-262 (1998). https://doi.org/10.1016/S0039-6028(98)00286-6
  18. Schmidt, T. J., Gasteiger, H. A., Stab, G. D., Urban, P. M., Koib, D. M., and Behm, R. J., "Characterization of High-Surface- Area Electrocatalysts using a Rotating Disk Electrode Configuration," J. Electrochem. Soc., 145, 2354-2358 (1998). https://doi.org/10.1149/1.1838642
  19. Gilrgi, L., Pozio, A., Bracchini, C., Giorgi, R., and Turtu, S., "$H_{2}$ and TEX>$H_{2}$/CO Oxidation Mechanism on Pt/C, Ru/C and Pt- Ru/C Electrocatalysts," J. Appl. Electrochem., 31, 325-334 (2001). https://doi.org/10.1023/A:1017595920726
  20. Yang, B., Lu, Q., Wang, Y., Zhaung, L., Lu, J., Liu, P., Wang, J., and Wang, R., "Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts," Chem. Mater., 15, 3552-3557 (2003). https://doi.org/10.1021/cm034306r
  21. Antolini, E., Cardellini, F., Giorgi, L., and Passalacqua, E., "Effect of Me (Pt + Ru) Content in Me/C Catalysts on PtRu Alloy Formation: An XRD Analysis," J. Mater. Sci. Lett., 19, 2099-2103 (2000). https://doi.org/10.1023/A:1026702121134
  22. Radmilovic, V., Gasteiger, H. A., and Ross, P. N., "Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation," J. Catal., 154, 98-106 (1995). https://doi.org/10.1006/jcat.1995.1151
  23. Kim, H. J., Choi, S. M., Green, S., Tompsett, G. A., Lee, S. H., Huber, G. W., and Kim, W. B., "Highly Active and Stable PtRuSn/C Catalyst for Electrooxidations of Ethylene glycol and Glycerol," Appl. Catal. B: Environ., 101, 366-375 (2011).
  24. Bock, C., Paquet, C., Couillard, M., Botton, G. A., and Mac- Dougall, B. R., "Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism," J. Am. Chem. Soc,. 126, 8028-8037 (2004). https://doi.org/10.1021/ja0495819
  25. Arico, A. S., Cretì, P., Kim, H., Mantegna, R., Giordano, N., and Antonucci, V., "Analysis of the Electrochemical Characteristics of a Direct Methanol Fuel Cell Based on a Pt-Ru/C Anode Catalyst," J. Electrochem. Soc., 143, 3950-3959 (1996). https://doi.org/10.1149/1.1837321
  26. Neri, G., Milone, C., Galvagno, S., Pijpers, A. P. J., and Schwank, J., "Characterization of Pt-Sn/carbon Hydrogenation Catalysts," Appl. Catal. A: Gen., 227, 105-115 (2002). https://doi.org/10.1016/S0926-860X(01)00927-9
  27. Shukla, A. K., Arico, A. S., El-Khatib, K. M., Kim, H., Antonucci, P. L., and Antonucci, V., "An X-ray Photoelectron Spectroscopic Study on the Effect of Ru and Sn Additions to Platinised Carbons," Appl. Surf. Sci., 137, 20-29 (1999). https://doi.org/10.1016/S0169-4332(98)00483-8
  28. Schmidt, T. J., Noeske, M., Gasteiger, H. A., and Behm, R. J., "Electrocatalytic Activity of PtRu Alloy Colloids for CO and CO/TEX>$H_{2}$ Electrooxidation: Stripping Voltammetry and Rotating Disk Measurements," Langmuir, 13, 2591-2595 (1997). https://doi.org/10.1021/la962068r
  29. Jusys, Z., Kaiser, J., and Behm, R. J., "Composition and Activity of High Surface Area PtRu Catalysts towards Adsorbed CO and Methanol Electrooxidation-A DEMS Study," Electrochim. Acta, 47, 3693-3706 (2002). https://doi.org/10.1016/S0013-4686(02)00339-0
  30. Markovic, N. M., and Ross, P. N., "Surface Science Studies of Model Fuel Cell Electrocatalysts," Surf. Sci. Rep., 45, 117- 229 (2002). https://doi.org/10.1016/S0167-5729(01)00022-X