DOI QR코드

DOI QR Code

Hydrogen Production from Photocatalytic Splitting of Methanol/water Solution over Ti Impregnated WO3

티타늄 함유 텅스텐 산화물 광촉매를 이용한 메탄올/물 분해로부터 수소제조

  • Lee, Gayoung (Department of Chemistry, Yeungnam University) ;
  • Park, Yujin (Department of Chemistry, Yeungnam University) ;
  • Park, No-Kuk (Department of Chemical Engineering, Yeungnam University) ;
  • Lee, Tae Jin (Department of Chemical Engineering, Yeungnam University) ;
  • Kang, Misook (Department of Chemistry, Yeungnam University)
  • Received : 2012.11.08
  • Accepted : 2012.11.28
  • Published : 2012.12.31

Abstract

For effectively photochemical hydrogen production, Ti ions (0.01, 0.10, 0.50 mol%) impregnated $WO_3$ ($Ti/WO_3$) nanometer sized particles were prepared using a impregnation method as a photocatalyst. The characteristics of the synthesized $Ti/WO_3$ photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectra (PL), atomic force microscope (AFM), and electrostatic force microscope (EFM). The evolution of $H_2$ from methanol/water (1/1) photo-splitting over $Ti/WO_3$ photocatalysts was enhanced compared to those over pure $TiO_2$ and $WO_3$ photocatalysts; 3.02 mL of $H_2$ gas was evolved after 8 h when 0.5 g of a 0.10 mol% $Ti/WO_3$ catalyst was used.

본 연구에서는 보다 효율적인 광 전기화학적 수소제조를 위하여 광촉매로써 산화텅스텐에 티타늄을 함침하여 $Ti/WO_3$ 나노입자를 제조하였다. 제조한 $Ti/WO_3$의 물리적 특성은 X-선 회절분석법(XRD), 주사전자현미경(SEM), 발광분광계(PL), 원자간력 현미경(AFM), 정전기 현미경(EFM)을 통해 확인하였다. 메탄올/물 (1/1) 광분해 수소제조 실험 결과, 순수 아나타제 티타니아나 산화텅스텐 광촉매보다 $Ti/WO_3$ 광촉매에서 촉매활성이 향상되었으며, 0.5 g의 0.10 mol % $Ti/WO_3$ 촉매를 사용한 경우 8시간 반응 시 3.02 mL의 수소가 발생되었다.

Keywords

References

  1. Winter, C. -J., "Hydrogen Energy-Abundant, Efficient, Clean: A Debate over the Energy-system-of-change," Int. J. Hydrogen Energy, 34, S1-S52 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. Conte, M., Prosini, P. P., and Passerini, S., "Overview of Energy/ hydrogen Storage: State-of-the-art of the Technologies and Prospects for Nanomaterials," Mater. Sci. Eng. B, 108, 2-8 (2004). https://doi.org/10.1016/j.mseb.2003.10.107
  3. Cui, W., Feng, L., Xu, C., Lu, S., and Qiu, F., "Hydrogen Production by Photocatalytic Decomposition of Methanol Gas on Pt/$TiO_{2}$ Nano-film," Catal. Commun., 5, 533-536 (2004). https://doi.org/10.1016/j.catcom.2004.06.011
  4. Miwa, T., Kaneco, S., Katsumata, H., Suzuki, T., Ohta, K., Verma, S. C., and Sugihara, K., "Photocatalytic Hydrogen Production from Aqueous Methanol Solution with CuO/$Al_{2}O_{3}$/ $TiO_{2}$ Nanocomposite," Int. J. Hydrogen Energy, 35, 6554- 6560 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.128
  5. Xu, Y., Xu, H., Li, H., Xia, J., Liu, C., and Liu, L., "Enhanced Photocatalytic Activity of New Photocatalyst Ag/AgCl/ZnO," J. Alloys Compd., 509, 3286-3292 (2011). https://doi.org/10.1016/j.jallcom.2010.11.193
  6. Kanade, K. G., Baeg, J. -O., Mulik, U. P., Amalnerkar, D. P., and Kale, B. B., "Nano-CdS by Polymer-inorganic Solidstate Reaction: Visible Light Pristine Photocatalyst for Hydrogen Generation," Mater. Res. Bull., 41, 2219-2225 (2006). https://doi.org/10.1016/j.materresbull.2006.04.031
  7. Kozak, O., Praus, P., Koc, i, K., and Klementova, M., "Preparation and Characterization of ZnS Nanoparticles Deposited on Montmorillonite," J. Colloid. Interface Sci., 352, 244-251 (2010). https://doi.org/10.1016/j.jcis.2010.09.016
  8. Yamashita, H., Nose, H., Kuwahara, Y., Nishida, Y., Yuan, S., and Mori, K., "$TiO_{2}$ Photocatalyst Loaded on Hydrophobic $Si_{3}N_{4}$ Support for Efficient Degradation of Organics Diluted in Water," Appl. Catal. A, 350, 164-168 (2008). https://doi.org/10.1016/j.apcata.2008.08.015
  9. Ohno, T., Miyamoto, Z., Nishijima, K., Kanemitsu, H., and Xueyuan, F., "Sensitization of Photocatalytic Activity of Sor N-doped $TiO_{2}$ Particles by Adsorbing $Fe^{3+}$ Cations," Appl. Catal. A, 302, 62-68 (2006) https://doi.org/10.1016/j.apcata.2005.12.010
  10. Yin, S., Ihara, K., Aita, Y., Komatsu, M., and Sato, T., "Visiblelight Induced Photocatalytic Activity of $TiO_{2}-_{x}A_{y}$ (A = N, S) Prepared by Precipitation Route," J. Photochem. Photobiol. A, 179, 105-114 (2006). https://doi.org/10.1016/j.jphotochem.2005.08.001
  11. Jang, J. S., Kim, H. G., Borse, P. H., and Lee, J. S., "Simultaneous Hydrogen Production and Decomposition of $H_{2}O$ Dissolved in Alkaline Water over CdS-$TiO_{2}$ Composite Photocatalysts under Visible Light Irradiation," Int. J. Hydrogen Energy, 32, 4786-4791 (2007) https://doi.org/10.1016/j.ijhydene.2007.06.026
  12. Lee, Y., Chae, J., and Kang, M., "Comparison of the Photovoltaic Efficiency on DSSC for Nanometer Sized $TiO_{2}$ Using a Conventional Sol-gel and Solvothermal Methods," J. Ind. Eng. Chem., 16, 609-614 (2010). https://doi.org/10.1016/j.jiec.2010.03.008
  13. Baia, L., Peter, A., Cosoveanu, V., Indrea, E., Baia, M., Popp, J., and Danciu, V., "Synthesis and Nanostructural Characterization of $TiO_{2}$ Aerogels for Photovoltaic Devices," Thin Solid Films, 511-512, 512-516 (2006). https://doi.org/10.1016/j.tsf.2005.12.024
  14. Burton, A. W., Ong, K., Rea, T., and Chan, I. Y., "On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of Its Application to Zeolites with One-dimensional Pore Systems," Micropor. Mesopor. Mat., 117, 75-90 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010
  15. Jiaguo, Y., Lifang, Q., and Mietek, J., "Hydrogen Production by Photocatalytic Water Splitting over Pt/$TiO_{2}$ Nanosheets with Exposed (001) Facets," J. Phys. Chem. C, 114, 13118-13125 (2010). https://doi.org/10.1021/jp104488b
  16. Kwak, B. S., Choi, H. C., Woo, J. W., Lee, J. S., An, J. B., Ryu, S. G., and Kang, M., "Photo-electochemical Hydrogen Production over P- and B-incorporated $TiO_{2}$ Nanometer Sized Photo-catalysts," Clean Tech., 17, 78-82 (2011).
  17. Kumar, R., Ali, S. A., Mahur, A. K., Virk, H. S., Singh, F., Khan, S. A., Avasthi, D. K., and Prasad, R., "Study of Optical Band Gap and Carbonaceous Clusters in Swift Heavy Ion Irradiated Polymers with UV-Vis Spectroscopy," Nucl. Instrum. Methods Phys. Res. B, 266, 1788-1792 (2008). https://doi.org/10.1016/j.nimb.2008.01.010
  18. Bandara, J., Udawatta, C. P. K., and Rahapakse, C. S. K., "Highly Stable CuO Incorporated $TiO_{2}$ Catalyst for Photocatalytic Hydrogen Production from $H_{2}O$," Photochem. Photobiol. Sci., 4, 857-861 (2005). https://doi.org/10.1039/b507816d
  19. Xiao-Jun, L., Shi-Xiong, Z., Chen, Z., Hai-Xin, C., Yong, C., and Wen-Fu, F., "Synergetic Effect of Cu and Graphene as Cocatalyst on $TiO_{2}$ for Enhanced Photocatalytic Hydrogen Evolution from Solar Water Splitting," J. Mater. Chem., 22, 18542-18549 (2012). https://doi.org/10.1039/c2jm33325b
  20. Yamase, T., Cao, X., and Yazaki, S., "Structure of Double Keggin-Ti/W-mixed Polyanion $[(GeTi_{3}W_{9}O_{37})_{2}O_{3}]_{14}$ and Multi Electron-transfer-based Photocatalyic $H_{2}$-generation," J. Mol. Catal. A, 262, 119-127 (2007). https://doi.org/10.1016/j.molcata.2006.08.040

Cited by

  1. Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite vol.19, pp.2, 2013, https://doi.org/10.7464/ksct.2013.19.2.105
  2. Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts vol.25, pp.8, 2015, https://doi.org/10.3740/MRSK.2015.25.8.391