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Abstract

In this paper, we give definitions for common limit in the range property of mappings and obtain common fixed point
theorem for a pair of weakly compatible functions in intuitionistic fuzzy metric space using the joint common limit in the
range property of mappings(shortly, (JCLR) property). Our results improve and generalize results of Chauhan et al[1].
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1. Introduction

Zadeh[10] researched the concept of a fuzzy set.
In 1975, George and Veeramani[2] modified the con-
cept of fuzzy metric space introduced by Kramosil and
Michalek[4] with a view to obtain a Hausdorff topology,
and this has recently found very fruitful applications in
quantum particle physics. In recent years, many authors
have proved fixed point theorems in fuzzy metric spaces,
and observed some common fixed point theorems in fuzzy
metric space which improved many known results([3], [9]
etc). Chauhan et al[1] introduced the notion of (JCLR)
property and obtained fixed point theorem in fuzzy met-
ric space. Park[5] studied some properties for compatible
map in intuitionistic fuzzy metric space. Also, Park[6],[7]
defined the intuitionistic fuzzy contraction, and some fixed
point theorem using common property(E.A.) and weakly
compatibility in intuitionistic fuzzy metric space.

In this paper, we obtain common fixed point theorem
for a pair of weakly compatible functions using the joint
common limit in the range property of mappings(shortly,
(JCLR) property) in intuitionistic fuzzy metric space. Our
results improve and generalize results of Chauhan et al[1].

2. Preliminaries

In this part, we recall some definitions, properties and
known results in the intuitionistic fuzzy metric space as fol-
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lowing :
Let us recall(see [5]) that a continuous t−norm is a op-

eration ∗ : [0, 1]× [0, 1]→ [0, 1] which satisfies the follow-
ing conditions: (a)∗ is commutative and associative, (b)∗ is
continuous, (c)a ∗ 1 = a for all a ∈ [0, 1], (d)a ∗ b ≤ c ∗ d
whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]). Also, a con-
tinuous t−conorm is a operation � : [0, 1]× [0, 1]→ [0, 1]
which satisfies the following conditions: (a)� is commuta-
tive and associative, (b)� is continuous, (c)a � 0 = a for all
a ∈ [0, 1], (d)a � b ≥ c � d whenever a ≤ c and b ≤ d
(a, b, c, d ∈ [0, 1]).

Definition 2.1. ([5])The 5−tuple (X,M,N, ∗, �) is said to
be an intuitionistic fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t−norm, � is a continuous t−conorm
and M,N are fuzzy sets on X2 × (0,∞) satisfying the
following conditions; for all x, y, z ∈ X , such that

(a)M(x, y, t) > 0,
(b)M(x, y, t) = 1 if and only if x = y,
(c)M(x, y, t) = M(y, x, t),
(d)M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(e)M(x, y, ·) : (0,∞)→ (0, 1] is continuous,
(f)N(x, y, t) > 0,
(g)N(x, y, t) = 0 if and only if x = y,
(h)N(x, y, t) = N(y, x, t),
(i)N(x, y, t) �N(y, z, s) ≥ N(x, z, t+ s),
(j)N(x, y, ·) : (0,∞)→ (0, 1] is continuous.
Note that (M,N) is called an intuitionistic fuzzy metric

on X . The functions M(x, y, t) and N(x, y, t) denote the
degree of nearness and the degree of non-nearness between
x and y with respect to t, respectively.

Let X be an intuitionistic fuzzy metric space. For t > 0,
the open ball B(x, r, t) with center x ∈ X and radius 0 <
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r < 1 is defined by

B(x, r, t) = {y ∈ X;M(x, y, t) > 1− r,N(x, y, t) < r}.

Now, let X be an intuitionistic fuzzy metric space and τ
the set of all A ⊂ X with x ∈ A if and only if there exist
t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is
a topology on X induced by the intuitionistic fuzzy metric
M,N .

Definition 2.2. ([8]) LetX be an intuitionistic fuzzy metric
space.
M and N are said to be continuous on X2 × (0,∞) if

lim
n→∞

M(xn, yn, t) = M(x, y, t),

lim
n→∞

N(xn, yn, t) = N(x, y, t)

whenever a sequence {(xn, yn, tn)} in X2 × (0,∞) con-
verge to a point (x, y, t) ∈ X2 × (0,∞), that is,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1,

lim
n→∞

N(xn, x, t) = lim
n→∞

N(yn, y, t) = 0

and

lim
n→∞

M(x, y, tn) = M(x, y, t),

lim
n→∞

N(x, y, tn) = N(x, y, t).

Lemma 2.3. ([5]) Let X be an intuitionistic fuzzy metric
space. If there exists k ∈ (0, 1) such that

M(x, y, kt) ≥M(x, y, t), N(x, y, kt) ≤ N(x, y, t)

for all x, y ∈ X and t > 0, then x = y.

Definition 2.4. ([6]) A pair of self mappings (f, g) defined
on an intuitionistic fuzzy metric space X is said to satisfy
the property(E.A.) if there exists a sequence {xn} ⊂ X
such that limn→∞ fxn = limn→∞ gxn = z for some z ∈
X .

Definition 2.5. ([7]) Two self mappings f and g on an intu-
itionistic fuzzy metric space X are called weakly compati-
ble(or coincidentally commuting) if they commute at their
point of coincidence. That is, if fx = gx for some z ∈ X ,
then fgx = gfx.

Definition 2.6. A pair (f, g) of self mappings of an in-
tuitionistic fuzzy metric space X is said to satisfy the
common limit in the range of g property(shortly, (CLRg)
property) if there exists a sequence {xn} ⊂ X such that
limn→∞ fxn = limn→∞ gxn = gu for some u ∈ X .

Example 2.7. LetX be an intuitionistic fuzzy metric space
with X = [0,∞) and

M(x, y, t) =


t

t+ |x− y|
if t > 0,

0 if t = 0

N(x, y, t) =


|x− y|

t+ |x− y|
if t > 0

1 if t = 0

for all x, y ∈ X . Define self mappings f and g on X de-
fined by f(x) = x

8 and g(x) = 3x
7 for all x ∈ X . If {xn} =

{ 1n}n∈N in X . Since limn→∞ fxn = limn→∞ gxn =
0 = g(0) for 0 ∈ X . Therefore f and g satisfy the (CLRg)
property.

Definition 2.8. ([1]) Two families of self mappings
{fi}mi=1 and {gk}nk=1 are said to be pairwise commuting
if

a)fifj = fjfi for all i, j ∈ {1, 2, · · · ,m},
b)gkgl = glgk for all k, l ∈ {1, 2, · · · , n},
c)figk = gkfi for all i ∈ {1, 2, · · · ,m} and k ∈
{1, 2, · · · , n}.

Implicit relations on intuitionistic fuzzy metric spaces
have been used in many articles([5], [7] etc). Let Ψ =
{φ, ψ} be implicit functions set, I = [0, 1], φ, ψ : I5 → I
be continuous functions following conditions :

(I)φ is decreasing and ψ is increasing in five variables.
(II)φ(t, t, t, t, t) > t and ψ(t, t, t, t, t) < t for all t ∈

[0, 1).

3. Main Result

Definition 3.1. Let X be an intuitionistic fuzzy metric
space and f, g, u, v : X → X . The pair (f, v) and (u, g)
are said to satisfy the joint common limit in the range of v
and g property(shortly, (JCLRvg) property) if there exists a
sequence {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

vxn = lim
n→∞

uyn

= lim
n→∞

gyn = vz = gz
(1)

for some z ∈ X .

Remark 3.2. If f = u and g = v and {xn} = {yn} in (1),
then we get the definition of (CLRg) property.

Theorem 3.3. Let X be an intuitionistic fuzzy metric
space, where ∗,� are continuous t-norm, t-conorm and
f, g, u and v be mappings from X into itself. Further, let
the pair (f, v) and (v, g) are weakly compatible and there
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exists a constant k ∈ (0, 12 ) such that

M(fx, uy, kt) ≥ φ(M(vx, gy, t),M(fx, vx, t),

M(uy, gy, t),M(fx, gy, αt),

M(uy, vx, 2t− αt)), (2)
N(fx, uy, kt) ≤ ψ(N(vx, gy, t), N(fx, vx, t),

N(uy, gy, t), N(fx, gy, αt),

N(uy, vx, 2t− αt))

hold for all x, y ∈ X , α ∈ (0, 2), t > 0 and φ, ψ ∈ Φ. If
(f, v) and (u, g) satisfy the (JCLRvg) property, then f, g, u
and v have a unique common fixed point in X .

Proof. Since the pairs (f, v) and (u, g) satisfy the
(JCLRvg) property, there exists a sequence {xn}, {yn} ⊂
X such that limn→∞ fxn = limn→∞ vxn =
limn→∞ uyn = limn→∞ gyn = vz = gz for some z ∈ X .

Now, we assert that gz = uz. Using (2), with x = xn,
y = z for α = 1, we get

M(fxn, uz, kt) ≥ φ(M(vxn, gz, t),M(fxn, vxn, t),

M(uz, gz, t),M(fxn, gz, t),

M(uz, vxn, t)),

N(fxn, uz, kt) ≤ ψ(N(vxn, gz, t), N(fxn, vxn, t),

N(uz, gz, t), N(fxn, gz, t),

N(uz, vxn, t)).

Taking the limit as n→∞, we have

M(gz, uz, kt) ≥ φ(M(gz, gz, t),M(gz, gz, t),

M(uz, gz, t),M(gz, gz, t),

M(uz, gz, t)),

N(gz, uz, kt) ≤ ψ(N(gz, gz, t), N(gz, gz, t),

N(uz, gz, t), N(gz, gz, t),

N(uz, gz, t)).

Since φ is increasing, and ψ is decreasing in each of its
coordinate and φ(t, t, t, t, t) > t and ψ(t, t, t, t, t) < t for
all t ∈ [0, 1), we get M(gz, uz, kt) ≥ M(gz, uz, t) and
N(gz, uz, kt) ≤ N(gz, uz, t). By Lemma 2.3, we have
gz = uz

Next, we show that fz = gz. Using (2) with x = z,
y = yn for α = 1, we have

M(fz, uyn, kt) ≥ φ(M(vz, gyn, t),M(fz, vz, t),

M(uyn, gyn, t),M(fz, gyn, t),

M(uyn, vz, t)),

N(fz, uyn, kt) ≤ ψ(N(vz, gyn, t), N(fz, vz, t),

N(uyn, gyn, t), N(fz, gyn, t),

N(uyn, vz, t)).

Taking the limit as n→∞, we have

M(fz, gz, kt) ≥ φ(M(gz, gz, t),M(fz, gz, t),

M(gz, gz, t),M(fz, gz, t),

M(gz, gz, t)),

N(fz, gz, kt) ≤ ψ(N(gz, gz, t), N(fz, gz, t),

N(gz, gz, t), N(fz, gz, t),

N(gz, gz, t)).

Since φ is increasing, and ψ is decreasing in each of its
coordinate and φ(t, t, t, t, t) > t and ψ(t, t, t, t, t) < t for
all t ∈ [0, 1), we get M(fz, gz, kt) ≥ M(fz, gz, t) and
N(fz, gz, kt) ≤ N(fz, gz, t). By Lemma 2.3, we have
fz = gz

Now, we assume that w = fz = gz = uz = vz. Since
the pair (f, v) is weakly compatible, fvz = vfz and fw =
fvz = vfz = vw. Also, since (u, g) is weakly compatible,
guz = ugz and gw = guz = ugz = uw.

We prove that w = fw. Using (2) with x = w, y = z
for α = 1, we have

M(fw, uz, kt) ≥ φ(M(vw, gz, t),M(fw, vw, t),

M(uz, gz, t),M(fw, gz, t),

M(uz, vw, t)),

N(fw, uz, kt) ≤ ψ(N(vw, gz, t), N(fw, vw, t),

N(uz, gz, t), N(fw, gz, t),

N(uz, vw, t)).

Since φ is increasing, and ψ is decreasing in each of its
coordinate and φ(t, t, t, t, t) > t and ψ(t, t, t, t, t) < t for
all t ∈ [0, 1), we get M(fw,w, kt) ≥ M(fw,w, t) and
N(fw,w, kt) ≤ N(fw,w, t). By Lemma 2.3, we have
fw = w. Therefore w = fw = vw.

Next, we show that w = uw. Using (2) with x = z,
y = w for α = 1, we have

M(fz, uw, kt) ≥ φ(M(vz, gw, t),M(fz, vz, t),

M(uw, gw, t),M(fz, gw, t),

M(uw, vz, t)),

N(fz, uw, kt) ≤ ψ(N(vz, gw, t), N(fz, vz, t),

N(uw, gw, t), N(fz, gw, t),

N(uw, vz, t))

and so

M(w, uw, kt) ≥ φ(M(w, uw, t),M(w,w, t),

M(uw, uw, t),M(w, uw, t),

M(uw,w, t)),

N(w, uw, kt) ≤ ψ(N(w, uw, t), N(w,w, t),

N(uw, uw, t), N(w, uw, t),

N(uw,w, t)).
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Since φ is increasing, and ψ is decreasing in each of its
coordinate and φ(t, t, t, t, t) > t and ψ(t, t, t, t, t) < t for
all t ∈ [0, 1), we get M(w, uw, kt) ≥ M(w, uw, t) and
N(w, uw, kt) ≤ N(w, uw, t). By Lemma 2.3, we have
w = uw. Hence w = uw = gw. Therefore w = fw =
gw = uw = vw. That is, f, g, u and v have common fixed
point w ∈ X .

Finally, we let abe another common fixed point of map-
pings f, g, u and v. From (2) with x = w, y = a for α = 1,
we have

M(fw, uw, kt) ≥ φ(M(vw, ga, t),M(fw, vw, t),

M(ua, ga, t),M(fw, ga, t),

M(ua, vw, t)),

N(fw, uw, kt) ≤ ψ(N(vw, ga, t), N(fw, vw, t),

N(ua, ga, t), N(fw, ga, t),

N(ua, vw, t)),

and

M(w, a, kt) ≥ φ(M(w, a, t),M(w,w, t),

M(a, a, t),M(w, a, t),

M(a,w, t)),

N(w, a, kt) ≤ ψ(N(w, a, t), N(w,w, t),

N(a, a, t), N(w, a, t),

N(a,w, t)),

Hence we get M(w, a, kt) ≥ M(w, a, t) and
N(w, a, kt) ≤ N(w, a, t). By Lemma 2.3, we have
w = a. Therefore f, g, u and v have a unique common
fixed point. This completes the proof.

Remark 3.4. Theorem 3.3 improves and generalizes the
result of Park[7] without any requirement of containment
amongst range sets of the involved mappings and closed-
ness of the subspace.

Corollary 3.5. Let X be an intuitionistic fuzzy metric
space, where ∗,� are continuous t-norm, t-conorm and f, g
be mappings from X into itself. Further, let the pair (f, g)
is weakly compatible and there exists a constant k ∈ (0, 12 )
such that

M(fx, fy, kt) ≥ φ(M(gx, gy, t),M(fx, gx, t),

M(fy, gy, t),M(fx, gy, αt),

M(fy, gx, 2t− αt)), (3)
N(fx, fy, kt) ≤ ψ(N(gx, gy, t), N(fx, gx, t),

N(fy, gy, t), N(fx, gy, αt),

N(fy, gx, 2t− αt))

hold for all x, y ∈ X , α ∈ (0, 2), t > 0 and φ, ψ ∈ Φ.
If (f, g) satisfies the (JCLRg) property, then f, g have a
unique common fixed point in X .

Proof. Taking with f = u and g = v in Theorem 3.3, then
we have the result of Corollary 3.5.
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