Delta Closure and Delta Interior in Intuitionistic Fuzzy Topological Spaces

Yeon Seok Eom and Seok Jong Lee

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

Due to importance of the concepts of θ -closure and δ -closure, it is natural to try for their extensions to fuzzy topological spaces. So, Ganguly and Saha introduced and investigated the concept of fuzzy δ -closure by using the concept of quasicoincidence in fuzzy topological spaces. In this paper, we will introduce the concept of δ -closure in intuitionistic fuzzy topological spaces, which is a generalization of the δ -closure by Ganguly and Saha.

Key Words: intuitionistic fuzzy, δ -closure, δ -interior

1. Introduction and Preliminaries

The concepts of θ -closure and δ -closure are useful tools in standard topology in the study of *H*-closed spaces, Katetov's and *H*-closed extensions, generalizations of the Stone-Weierstrass theorem and others [1, 2, 3, 4, 5, 6]. Due to importance of these concepts, it is natural to try for their extensions to fuzzy topological spaces. So, Ganguly and Saha introduced and investigated the concept of fuzzy δ closure by using the concept of quasi-coincidence in fuzzy topological spaces [7]. Many researchers investigated properties of closure operators and continuous mappings in the intuitionistic fuzzy topological spaces, [8, 9, 10, 11, 12].

In this paper, we will introduce the concept of δ -closure in intuitionistic fuzzy topological spaces, which is a generalization of the δ -closure by Ganguly and Saha.

Let X be a nonempty set and I the unit interval [0, 1]. An *intuitionistic fuzzy set* A in X is an object of the form

$$A = (\mu_A, \gamma_A)_{:}$$

where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $\mu_A + \gamma_A \leq 1$. Obviously, every fuzzy set μ_A in X is an intuitionistic fuzzy set of the form $(\mu_A, 1 - \mu_A)$.

Throughout this paper, I(X) denotes the family of all intuitionistic fuzzy sets in X, and "IF" stands for "intuitionistic fuzzy."

Definition 1.1 ([13]). Let X be a nonempty set, and let the intuitionistic fuzzy sets A and B be of the form $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B)$. Then

- (1) $A \leq B$ iff $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$,
- (2) A = B iff $A \leq B$ and $B \leq A$,
- (3) $A^c = (\gamma_A, \mu_A),$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B),$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B),$
- (6) $\underline{0} = (\tilde{0}, \tilde{1})$ and $\underline{1} = (\tilde{1}, \tilde{0})$.

Definition 1.2 ([14]). An *intuitionistic fuzzy topology* on a nonempty set X is a family \mathcal{T} of intuitionistic fuzzy sets in X which satisfies the following axioms:

- (1) $\underline{0}, \underline{1} \in \mathcal{T}$,
- (2) $G_1 \cap G_2 \in \mathcal{T}$ for any $G_1, G_2 \in \mathcal{T}$,
- (3) $\bigcup G_i \in \mathcal{T}$ for any $\{G_i : i \in J\} \subseteq \mathcal{T}$.

In this case the pair (X, \mathcal{T}) is called an *intuitionistic fuzzy* topological space, and any intuitionistic fuzzy set in \mathcal{T} is known as an *intuitionistic fuzzy open set* in X.

Definition 1.3 ([14]). Let (X, \mathcal{T}) be an intuitionistic fuzzy topological space and A an intuitionistic fuzzy set in X. Then the *intuitionistic fuzzy interior* of A and the *intuitionistic fuzzy closure* of A are defined by

$$cl(A) = \bigcap \{ K \mid A \le K, K^c \in \mathcal{T} \}$$

and

$$int(A) = \bigcup \{ G \mid G \le A, G \in \mathcal{T} \}.$$

Manuscript received Sep. 26, 2012; revised Dec. 18, 2012; accepted Dec. 18, 2012.

Corresponding author: Seok Jong Lee (sjl@cbnu.ac.kr)

This work was supported by the research grant of the Chungbuk National University in 2011.

[©] The Korean Institute of Intelligent Systems. All rights reserved.

Theorem 1.4 ([14]). For any IF set A in an IF topological space (X, \mathcal{T}) , we have

$$\operatorname{cl}(A^c) = (\operatorname{int}(A))^c$$
 and $\operatorname{int}(A^c) = (\operatorname{cl}(A))^c$

Definition 1.5 ([15, 16]). Let $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$. An *intuitionistic fuzzy point* $x_{(\alpha,\beta)}$ of X is an intuitionistic fuzzy set in X defined by

$$x_{(\alpha,\beta)}(y) = \begin{cases} (\alpha,\beta) & \text{if } y = x, \\ (0,1) & \text{if } y \neq x. \end{cases}$$

In this case, x is called the *support* of $x_{(\alpha,\beta)}$, α the *value* of $x_{(\alpha,\beta)}$ and β the *nonvalue* of $x_{(\alpha,\beta)}$. An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to *belong* to an intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ in X, denoted by $x_{(\alpha,\beta)} \in A$, if $\alpha \leq \mu_A(x)$ and $\beta \geq \gamma_A(x)$.

Remark 1.6. If we consider an IF point $x_{(\alpha,\beta)}$ as an IF set, then we have the relation $x_{(\alpha,\beta)} \in A$ if and only if $x_{(\alpha,\beta)} \leq A$.

Definition 1.7 ([15, 16]). Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and $U = (\mu_U, \gamma_U)$ an intuitionistic fuzzy set in X. Suppose further that α and β are nonnegative real numbers with $\alpha + \beta \leq 1$. The intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to be *properly contained* in U if $\alpha < \mu_U(x)$ and $\beta > \gamma_U(x)$.

Definition 1.8 ([16, 17]). Let (X, \mathcal{T}) be an intuitionistic fuzzy topological space.

- (1) An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to be *quasi-coincident* with the intuitionistic fuzzy set $U = (\mu_U, \gamma_U)$, denoted by $x_{(\alpha,\beta)}qU$, if $\alpha > \gamma_U(x)$ or $\beta < \mu_U(x)$.
- (2) Let $U = (\mu_U, \gamma_U)$ and $V = (\mu_V, \gamma_V)$ be two intuitionistic fuzzy sets in X. Then U and V are said to be *quasi-coincident*, denoted by UqV, if there exists an element $x \in X$ such that $\mu_U(x) > \gamma_V(x)$ or $\gamma_U(x) < \mu_V(x)$.

The word 'not quasi-coincident' will be abbreviated as \tilde{q} .

Proposition 1.9 ([16]). Let U, V be IF sets and $x_{(\alpha,\beta)}$ an IF point in X. Then

- (1) $U\tilde{q}V^c \iff U \leq V$,
- (2) $UqV \iff U \not\leq V^c$,
- (3) $x_{(\alpha,\beta)} \leq U \iff x_{(\alpha,\beta)} \tilde{q} U^c$,
- (4) $x_{(\alpha,\beta)}qU \iff x_{(\alpha,\beta)} \not\leq U^c$.

Theorem 1.10 ([17]). Let $x_{(\alpha,\beta)}$ be an IF point in X, and $U = (\mu_U, \gamma_U)$ an IF set in X. Then $x_{(\alpha,\beta)} \in cl(U)$ if and only if UqN, for any IF q-neighborhood N of $x_{(\alpha,\beta)}$.

Definition 1.11 ([18]). Let A be an intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X, \mathcal{T}) . A is said to be

- (1) an *intuitionistic fuzzy semi-open set* of X, if there exists an intuitionistic fuzzy open set B of X such that $B \le A \le cl(B)$.
- (2) an *intuitionistic fuzzy regular open set* of X, if int(cl(A)) = A. The complement of an intuitionistic fuzzy regular open set is said to be an *intuitionistic fuzzy regular closed set*.

Theorem 1.12 ([18]). The following are equivalent:

- (1) An IF set A is IF semi-open in X.
- (2) $A \leq \operatorname{cl}(\operatorname{int}(A)).$

Remark 1.13. Comparing to fuzzy sets, intuitionistic fuzzy sets have some different properties as follows, which are shown in the next examples.

x_(α,β) ∈ A ∪ B ⇒ x_(α,β) ∈ A or x_(α,β) ∈ B.
x_(α,β)qA and x_(α,β)qB ⇒ x_(α,β)q(A ∩ B).

Thus we have a little different results in generalizing the concepts of the fuzzy topological spaces to the intuitionistic fuzzy topological space.

Example 1.14. Let A, B be IF sets on the unit interval [0, 1] defined by

$$\mu_A = \frac{1}{3}\chi_{[0,\frac{1}{2}]}, \quad \gamma_A = \frac{2}{3}\chi_{[0,1]},$$
$$\mu_B = \frac{1}{3}\chi_{[\frac{1}{2},1]}, \quad \gamma_B = \frac{1}{3}\chi_{[0,1]}.$$

Also let $x = \frac{1}{4}$, $(\alpha, \beta) = (\frac{1}{4}, \frac{1}{2})$. Then $x_{(\alpha,\beta)} \in A \cup B$. However $x_{(\alpha,\beta)} \notin A$ and $x_{(\alpha,\beta)} \notin B$.

Example 1.15. Let A, B be IF sets on the unit interval [0, 1] defined by

$$\mu_A = \frac{1}{3}\chi_{[0,\frac{1}{2}]}, \quad \gamma_A = \frac{2}{3}\chi_{[0,1]},$$
$$\mu_B = \frac{1}{3}\chi_{[\frac{1}{2},1]}, \quad \gamma_B = \frac{1}{3}\chi_{[0,1]}.$$

Also let $x = \frac{1}{4}$, $(\alpha, \beta) = (\frac{1}{2}, \frac{1}{4})$. Then $x_{(\alpha,\beta)}qA$ and $x_{(\alpha,\beta)}qB$, but $x_{(\alpha,\beta)}\tilde{q}(A \cap B)$

International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 4, December 2012

2. Intuitionistic Fuzzy δ -closure and δ -interior

We introduce the concept of intuitionistic fuzzy δ closure in intuitionistic fuzzy topological spaces, and compare this concept with the intuitionistic fuzzy θ -closure introduced by Hanafy [8].

Definition 2.1. Let (X, \mathcal{T}) be an intuitionistic fuzzy topological space. An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to be an *intuitionistic fuzzy* δ -cluster point of an intuitionistic fuzzy set U if AqU for each intuitionistic fuzzy regular open q-neighborhood A of $x_{(\alpha,\beta)}$. The set of all intuitionistic fuzzy δ -cluster points of U is called the *intuitionistic fuzzy* δ -closure of U and denoted by $cl_{\delta}(U)$. An intuitionistic fuzzy set U is said to be an *intuitionistic fuzzy* δ -closed set if $U = cl_{\delta}(U)$. The complement of an intuitionistic fuzzy δ -closed set is said to be an *intuitionistic fuzzy* δ -closed set is said to be

Definition 2.2. Let (X, \mathcal{T}) be an intuitionistic fuzzy topological space, and let U be an intuitionistic fuzzy set in X. The *intuitionistic fuzzy* δ *-interior* of U is denoted and defined by

$$\operatorname{int}_{\delta}(U) = (\operatorname{cl}_{\delta}(U^c))^c.$$

From the above definition, we have the following relations:

- (1) $\operatorname{cl}_{\delta}(U^c) = (\operatorname{int}_{\delta}(U))^c$,
- (2) $(\operatorname{cl}_{\delta}(U))^c = \operatorname{int}_{\delta}(U^c).$

Remark 2.3. For any IF set U, U is an IF δ -open set if and only if $\operatorname{int}_{\delta}(U) = U$ because U is IF δ -open if and only if U^c is IF δ -closed if and only if $U^c = \operatorname{cl}_{\delta}(U^c)$ if and only if $U = (\operatorname{cl}_{\delta}(U^c))^c = \operatorname{int}_{\delta}(U)$.

- **Lemma 2.4.** (1) For any IF set U in an IF topological space (X, \mathcal{T}) , int(cl(U)) is an IF regular open set.
- (2) For any IF open set U in an IF topological space (X, T) such that x_(α,β)qU, int(cl(U)) is an IF regular open q-neighborhood of x_(α,β).

Proof. (1) Enough to show that int(cl(U)) = int(cl(int(cl(U)))). Since $int(cl(U)) \le cl(int(cl(U)))$, we have $int(int(cl(U))) \le int(cl(int(cl(U))))$. Thus $int(cl(U)) \le int(cl(int(cl(U))))$. Conversely, since $int(cl(U)) \le cl(U)$, we have $cl(int(cl(U))) \le cl(cl(U)) = cl(U)$. Thus $int(cl(int(cl(U)))) \le int(cl(U))$. Hence int(cl(U)) is an IF regular open set.

(2) Clearly, $int(U) \leq int(cl(U))$. Since U is an IF open set, we have

$$U = \operatorname{int}(U) \le \operatorname{int}(\operatorname{cl}(U)).$$

By (1), int(cl(U)) is an IF regular open set. Therefore int(cl(U)) is an IF regular open q-neighborhood of $x_{(\alpha,\beta)}$. Hanafy [8] showed that $cl(U) \leq cl_{\theta}(U)$ for each IF set U. The next theorem shows that the IF δ -closure defined above is the refined concept which goes between cl(U) and $cl_{\theta}(U)$. However, it has a little different properties compared to the IF θ -closure as in Remark 2.17.

Theorem 2.5. For any IF set U in an IF topological space (X, \mathcal{T}) ,

$$\operatorname{cl}(U) \leq \operatorname{cl}_{\delta}(U) \leq \operatorname{cl}_{\theta}(U).$$

Proof. Let $x_{(\alpha,\beta)} \notin cl_{\delta}(U)$. Then there exists an IF regular open q-neighborhood A of $x_{(\alpha,\beta)}$ such that $A\tilde{q}U$. Then A is an IF q-neighborhood of $x_{(\alpha,\beta)}$ such that $A\tilde{q}U$. By Theorem 1.10, $x_{(\alpha,\beta)} \notin cl(U)$. Thus $cl(U) \leq cl_{\delta}(U)$.

Let $x_{(\alpha,\beta)} \in \operatorname{cl}_{\delta}(U)$. Then for each IF regular open q-neighborhood A of $x_{(\alpha,\beta)}$, AqU. Suppose that there exists an IF open q-neighborhood B of $x_{(\alpha,\beta)}$ such that $\operatorname{cl}(B)\tilde{q}U$. Put $\operatorname{int}(\operatorname{cl}(B)) = G$. By Lemma 2.4, G is an IF regular open q-neighborhood of $x_{(\alpha,\beta)}$. Since $G = \operatorname{int}(\operatorname{cl}(B)) \leq$ $\operatorname{cl}(B)\tilde{q}U$, $G = \operatorname{int}(\operatorname{cl}(B)) \leq \operatorname{cl}(B) \leq U^c$. G is an IF regular open q-neighborhood of $x_{(\alpha,\beta)}$ such that $G\tilde{q}U$. This is a contradiction. Therefore, for any IF open q-neighborhood B of $x_{(\alpha,\beta)}$, $\operatorname{cl}(B)qU$. Hence $x_{(\alpha,\beta)} \in \operatorname{cl}_{\theta}(U)$.

- **Corollary 2.6.** (1) If U is an IF δ -closed set in an IF topological space (X, \mathcal{T}) , then U is an IF closed set.
- (2) If U is an IF θ -closed set in an IF topological space (X, \mathcal{T}) , then U is an IF δ -closed set.

Remark 2.7. The converses of Corollary 2.6 do not hold. We will give counterexamples in Example 2.14 and 2.15.

Theorem 2.8. If U is an IF open set in an IF topological space (X, \mathcal{T}) , then the IF closure and IF δ -closure are the same, i.e. $cl(U) = cl_{\delta}(U)$.

Proof. By Theorem 2.5, it is sufficient to show that $cl_{\delta}(U) \leq cl(U)$. Take any $x_{(\alpha,\beta)} \in cl_{\delta}(U)$. Suppose that $x_{(\alpha,\beta)} \notin cl(U)$. By Theorem 1.10, there exists an IF q-neighborhood G of $x_{(\alpha,\beta)}$ such that $G\tilde{q}U$. Since $G\tilde{q}U$, we have $G \leq U^c$. Since U^c is an IF closed set, $cl(G) \leq cl(U^c) = U^c$. Therefore, $int(cl(G)) \leq int(U^c) \leq U^c$, i.e. $int(cl(G))\tilde{q}U$. By Lemma 2.4, int(cl(U)) is an IF regular open q-neighborhood of $x_{(\alpha,\beta)}$ such that $int(cl(U))\tilde{q}U$. Hence $x_{(\alpha,\beta)} \notin cl_{\delta}(U)$.

In fact, the IF closure and the IF δ -closure are the same for any IF semi-open set as follows.

Theorem 2.9. For any IF semi-open set A, $cl(A) = cl_{\delta}(A)$.

Proof. Enough to show that $cl_{\delta}(A) \leq cl(A)$. Take any $x_{(\alpha,\beta)} \in cl_{\delta}(A)$. Suppose that $x_{(\alpha,\beta)} \notin cl(A)$. Then there exists an IF open q-neighborhood V of $x_{(\alpha,\beta)}$ such that $V\tilde{q}A$. By definition of semi-open set, there exists an IF open set G such that $G \leq A \leq cl(G)$. Thus $V \leq C$

 $\begin{array}{ll} A^c \leq G^c. \mbox{ Hence } {\rm cl}(V) \leq {\rm cl}(A^c) \leq {\rm cl}(G^c) = G^c. \mbox{ Also,} \\ {\rm int}({\rm cl}(V)) \leq {\rm int}({\rm cl}(A^c)) \leq {\rm int}({\rm cl}(G^c)) = {\rm int}(G^c) \leq G^c, \\ {\rm i.e.} & {\rm int}({\rm cl}(V)) \leq G^c. \mbox{ Therefore } G \leq ({\rm int}({\rm cl}(V)))^c. \\ {\rm Hence } A \leq {\rm cl}(G) \leq {\rm cl}(({\rm int}({\rm cl}(V)))^c) = ({\rm int}({\rm cl}(V)))^c \mbox{ because } ({\rm int}({\rm cl}(V)))^c \mbox{ is an IF closed set. Thus } {\rm int}({\rm cl}(V))\tilde{q}A. \\ {\rm By \ Lemma \ 2.4, \ int}({\rm cl}(V)) \mbox{ is an IF regular open } q-\mbox{ neighborhood of } x_{(\alpha,\beta)} \mbox{ such that } {\rm int}({\rm cl}(V))\tilde{q}A. \\ \end{array}$

Theorem 2.10. Let U and V be two IF sets in an IF topological space (X, \mathcal{T}) . Then we have the following properties:

- (1) $\operatorname{cl}_{\delta}(\underline{0}) = \underline{0},$
- (2) $U \leq \operatorname{cl}_{\delta}(U)$,
- (3) $U \leq V \Rightarrow \operatorname{cl}_{\delta}(U) \leq \operatorname{cl}_{\delta}(V),$

(4)
$$\operatorname{cl}_{\delta}(U) \cup \operatorname{cl}_{\delta}(V) = \operatorname{cl}_{\delta}(U \cup V),$$

(5)
$$\operatorname{cl}_{\delta}(U \cap V) \leq \operatorname{cl}_{\delta}(U) \cap \operatorname{cl}_{\delta}(V).$$

Proof. (1) Obvious.

(2) Since $U \leq \operatorname{cl}(U) \leq \operatorname{cl}_{\delta}(U), U \leq \operatorname{cl}_{\delta}(U)$.

(3) Let $x_{(\alpha,\beta)}$ be an IF point in X such that $x_{(\alpha,\beta)} \notin cl_{\delta}(V)$. Then there is an IF regular open q-neighborhood A of $x_{(\alpha,\beta)}$ such that $A\tilde{q}V$. Since $U \leq V$, we have $A\tilde{q}U$. Therefore $x_{(\alpha,\beta)} \notin cl_{\delta}(U)$.

(4) Since $U \leq U \cup V$, $\operatorname{cl}_{\delta}(U) \leq \operatorname{cl}_{\delta}(U \cup V)$. Similarly, $\operatorname{cl}_{\delta}(V) \leq \operatorname{cl}_{\delta}(U \cup V)$. Hence $\operatorname{cl}_{\delta}(U) \cup \operatorname{cl}_{\delta}(V) \leq \operatorname{cl}_{\delta}(U \cup V)$. To show that $\operatorname{cl}_{\delta}(U \cup V) \leq \operatorname{cl}_{\delta}(U) \cup \operatorname{cl}_{\delta}(V)$, take any $x_{(\alpha,\beta)} \in \operatorname{cl}_{\delta}(U \cup V)$. Then for any IF regular open q-neighborhood A of $x_{(\alpha,\beta)}$, $Aq(U \cup V)$. Hence, AqUor AqV. Therefore $x_{(\alpha,\beta)} \in \operatorname{cl}_{\delta}(U)$ or $x_{(\alpha,\beta)} \in \operatorname{cl}_{\delta}(V)$. Hence $x_{(\alpha,\beta)} \in \operatorname{cl}_{\delta}(U) \cup \operatorname{cl}_{\delta}(V)$.

(5) Since $U \cap V \leq U$, $cl_{\delta}(U \cap V) \leq cl_{\delta}(U)$. Similarly, $cl_{\delta}(U \cap V) \leq cl_{\delta}(V)$. Therefore $cl_{\delta}(U \cap V) \leq cl_{\delta}(U) \cap cl_{\delta}(V)$.

In general, finite intersection of IF regular closed sets is not IF regular closed. However, IF δ -closed sets have a nice properties as in the following theorem.

Theorem 2.11. Let (X, \mathcal{T}) be an IF topological space. Then the following hold:

- (1) Finite union of IF δ -closed sets in X is an IF δ -closed set in X.
- (2) Arbitrary intersection of IF δ -closed sets in X is an IF δ -closed set in X.

Proof. (1) Let G_1 and G_2 be IF δ -closed sets. Then $\operatorname{cl}_{\delta}(G_1 \cup G_2) = \operatorname{cl}_{\delta}(G_1) \cup \operatorname{cl}_{\delta}(G_2) = G_1 \cup G_2$. Thus $G_1 \cup G_2$ is an IF δ -closed set.

(2) Let G_i be an IF δ -closed set, for each $i \in I$. To show that $cl_{\delta}(\cap G_i) \leq \cap G_i$, take any $x_{(\alpha,\beta)} \in cl_{\delta}(\cap G_i)$. Suppose that $x_{(\alpha,\beta)} \notin \cap G_i$. Then there exists an $i_0 \in I$ such that $x_{(\alpha,\beta)} \notin G_{i_0}$. Since G_{i_0} is an IF δ -closed set, $x_{(\alpha,\beta)} \notin \operatorname{cl}_{\delta}(G_{i_0})$. Therefore, there exists an IF regular open q-neighborhood A of $x_{(\alpha,\beta)}$ such that $A\tilde{q}G_{i_0}$. Since $A\tilde{q}G_{i_0}$ and $\cap G_i \leq G_{i_0}$, we have $A\tilde{q}(\cap G_i)$. Thus $x_{(\alpha,\beta)} \notin \operatorname{cl}_{\delta}(\cap G_i)$. This is a contradiction. Hence $\operatorname{cl}_{\delta}(\cap G_i) \leq \cap G_i$.

Theorem 2.12. Let A be an IF set in an IF (X, \mathcal{T}) , then $cl_{\delta}(A)$ is the intersection of all IF regular closed supersets of A, or

$$\operatorname{cl}_{\delta}(A) = \bigwedge \{F \mid A \le F = \operatorname{cl}(\operatorname{int}(F))\}.$$

Proof. Suppose that $x_{(\alpha,\beta)} \notin \bigwedge \{F \mid A \leq F = cl(int(F))\}$. Then there exists an IF regular closed set F such that $x_{(\alpha,\beta)} \notin F$ and $A \leq F$. Since $x_{(\alpha,\beta)} \notin F$, $x_{(\alpha,\beta)}qF^c$. Note that $A \leq F$ if and only if $A\tilde{q}F^c$. Thus F^c is an IF regular open q-neighborhood of $x_{(\alpha,\beta)}$ such that $A\tilde{q}F^c$. Hence $x_{(\alpha,\beta)} \notin cl_{\delta}(A)$.

Let $x_{(\alpha,\beta)} \in \bigwedge \{F \mid A \leq F = \operatorname{cl}(\operatorname{int}(F))\}$. Suppose that $x_{(\alpha,\beta)} \notin \operatorname{cl}_{\delta}(A)$. Then there exists an IF regular open q-neighborhood U of $x_{(\alpha,\beta)}$ such that $A\tilde{q}U$. So, $A \leq U^c$. Since $x_{(\alpha,\beta)}qU$, $x_{(\alpha,\beta)} \notin U^c$. Therefore, there exists an IF regular closed set U^c such that $x_{(\alpha,\beta)} \notin U^c$ and $A \leq U^c$. Hence $x_{(\alpha,\beta)} \notin \bigwedge \{F \mid A \leq F = \operatorname{cl}(\operatorname{int}(F))\}$. This is a contradiction. Thus $x_{(\alpha,\beta)} \in \operatorname{cl}_{\delta}(A)$.

Remark 2.13. From the above theorem, for any IF set A, the IF δ -closure $cl_{\delta}(A)$ is an IF closed set. Moreover, $cl_{\delta}(A)$ becomes IF δ -closed, which will be shown in Theorem 2.18.

Now, we are ready to make counterexamples mentioned in Remark 2.7.

Example 2.14. Let $X = \{a, b\}$, and A the IF set defined by

$$A = <(\frac{a}{0.5},\frac{b}{0.3}), \big(\frac{a}{0.3},\frac{b}{0.5}\big)>$$

Let $\mathcal{T} = \{\underline{0}, \underline{1}, A\}$. Then \mathcal{T} is an IF topology on X. Clearly, A^c is an IF closed set. Since $cl(int(A^c)) = cl(\underline{0}) = \underline{0} \neq A^c$, A^c is not an IF regular closed set. Hence $\underline{0}$ and $\underline{1}$ are the only regular closed sets. Thus $cl_{\delta}(A^c) = \bigcap \{F \mid A^c \leq F, F \text{ is regular closed }\} = \underline{1} \neq A^c$. Hence A^c is not IF δ -closed. Therefore, A^c is an IF closed set which is not IF δ -closed.

Example 2.15. Let $X = \{a, b\}$, and A the IF set defined by

$$A = <(\frac{a}{0.5}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) >$$

Let $\mathcal{T} = \{\underline{0}, \underline{1}, A\}$. Then \mathcal{T} is an IF topology on X. Since $\operatorname{int}(\operatorname{cl}(A)) = \operatorname{int}(A^c) = A$, A is an IF regular open set. Thus A^c is an IF regular closed set, and consequently $\operatorname{cl}_{\delta}(A^c) = \bigcap \{F \mid A^c \leq F, F \text{ is regular closed } \} = A^c$. Hence A^c is an IF δ -closed set. But $\operatorname{cl}_{\theta}(A^c) = \bigcap \{\operatorname{cl}(F) \mid A^c \in A^c\}$ $F \in \mathcal{T}, A^c \leq F \} = \underline{1} \neq A^c$, and hence A^c is not IF θ -closed. Therefore, A^c is an IF δ -closed set which is not IF θ -closed.

Theorem 2.16. If U is an IF regular closed set, then U is an IF δ -closed set.

Proof. Let U be an IF regular closed set. Then cl(int(U)) = U. By Theorem 2.12, $cl_{\delta}(U) = \bigwedge \{F \mid U \leq F = cl(int(F))\} = U$. Thus U is IF δ -closed. \Box

Remark 2.17. Note that $cl_{\theta}(U)$ is not IF θ -closed in general (See [8]). But any IF δ -closure of an IF set is IF δ -closed as in the following theorem.

Theorem 2.18. For any IF set U, $cl_{\delta}(U)$ is an IF δ -closed set.

Theorem 2.19. IF δ -closure satisfies the Kuratowski closure axioms.

From the results of IF δ -closure which are obtained above, we have following properties of IF δ -interior.

Theorem 2.20. Let U and V be two IF sets in an IF topological space (X, \mathcal{T}) . Then we have the following:

- (1) $\operatorname{int}_{\delta}(\underline{1}) = \underline{1},$
- (2) $\operatorname{int}_{\delta}(U) \leq U$,

(3)
$$U \leq V \Rightarrow \operatorname{int}_{\delta}(U) \leq \operatorname{int}_{\delta}(V)$$
,

- (4) $\operatorname{int}_{\delta}(U \cap V) = \operatorname{int}_{\delta}(U) \cap \operatorname{int}_{\delta}(V)$,
- (5) $\operatorname{int}_{\delta}(V) \cup \operatorname{int}_{\delta}(U) \leq \operatorname{int}_{\delta}(U \cup V).$

Theorem 2.21. Let (X, \mathcal{T}) be an IF topological space. Then the following hold:

- (1) Finite intersection of IF δ -open sets in X is an IF δ -open set in X.
- (2) Arbitrary union of IF δ -open sets in X is an IF δ -open set in X.

Theorem 2.22. Let U be an IF set in an IF topological space (X, \mathcal{T}) . Then

$$\operatorname{int}_{\delta}(U) = \bigvee \{ G \mid \operatorname{int}(\operatorname{cl}(G)) = G \le U \}.$$

As a result, $int_{\delta}(U)$ is an IF open set.

- **Corollary 2.23.** (1) If U is an IF δ -open set in an IF topological space (X, \mathcal{T}) , then U is an IF open set.
- (2) If U is an IF θ -open set in an IF topological space (X, \mathcal{T}) , then U is an IF δ -open set.

Theorem 2.24. For any IF set U in an IF topological space (X, \mathcal{T}) , $\operatorname{int}_{\theta}(U) \leq \operatorname{int}_{\delta}(U) \leq \operatorname{int}(U)$. In particular, for any IF closed set U, $\operatorname{int}_{\theta}(U) = \operatorname{int}_{\delta}(U) = \operatorname{int}(U)$.

Corollary 2.25. If U is an IF regular open set, then U is an IF δ -open set.

Corollary 2.26. For any IF set U, $int_{\delta}(U)$ is an IF δ -open set.

References

- M. N. Mukherjee and S. P. Sinha, "Fuzzy Θ-closure operator on fuzzy topological spaces," *Internat. J. Math. Math. Sci.*, vol. 14, no. 2, pp. 309–314, 1991.
- [2] N. V. Veličko, "H-closed topological spaces," Mat. Sb. (N.S.), vol. 70 (112), pp. 98–112, 1966.
- [3] —, "On the theory of *H*-closed topological spaces," *Sibirsk. Mat. Ž.*, vol. 8, pp. 754–763, 1967.
- [4] R. F. Dickman, Jr. and J. R. Porter, "θ-closed subsets of Hausdorff spaces," *Pacific J. Math.*, vol. 59, no. 2, pp. 407–415, 1975.
- [5] M. S. Espelie and J. E. Joseph, "Some properties of θ-closure," *Canad. J. Math.*, vol. 33, no. 1, pp. 142–149, 1981. [Online]. Available: http://dx.doi.org/10.4153/CJM-1981-013-8
- [6] D. Sivaraj, "Semiopen set characterizations of almost-regular spaces," *Glas. Mat. Ser. III*, vol. 21(41), no. 2, pp. 437–440, 1986.
- [7] S. Ganguly and S. Saha, "A note on δ-continuity and δ-connected sets in fuzzy set theory," *Simon Stevin*, vol. 62, pp. 127–141, 1988.
- [8] I. M. Hanafy, A. M. Abd El-Aziz, and T. M. Salman, "Intuitionistic fuzzy θ-closure operator," *Bol. Asoc. Mat. Venez.*, vol. 13, no. 1, pp. 27–39, 2006.
- [9] S. J. Lee and J. T. Kim, "Fuzzy strongly (r, s)precontinuous mappings," *IEEE International Conference on Fuzzy Systems*, vol. 2009, pp. 581–586, 2009.
- [10] —, "fuzzy strongly (r,s)-pre-open and preclosed mappings," *Commun. Korean Math. Soc.*, vol. 26, no. 4, pp. 661–667, 2011.
- [11] S. J. Lee and S. M. Yun, "Fuzzy delta separation axioms," *IEEE International Conference on Fuzzy Systems*, vol. 2011, pp. 592–602, 2011.

Delta Closure and Delta Interior in Intuitionistic Fuzzy Topological Spaces

- [12] S. J. Lee and J. T. Kim, "Properties of fuzzy (r, s)-semi-irresolute mappings in intuitionistic fuzzy topological spaces," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 11, no. 3, pp. 190–196, 2011.
- [13] K. T. Atanassov, "Intuitionistic fuzzy sets," vol. 20, pp. 87–96, 1986.
- [14] D. Çoker, "An introduction to intuitionistic fuzzy topological spaces," *Fuzzy Sets and Systems*, vol. 88, pp. 81–89, 1997.
- [15] —, "An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces," *J. Fuzzy Math.*, vol. 4, no. 4, pp. 749–764, 1996.
- [16] D. Çoker and M. Demirci, "On intuitionistic fuzzy points," *Notes IFS*, vol. 1, no. 2, pp. 79–84, 1995.

- [17] I. M. Hanafy, "Intuitionistic fuzzy functions," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 3, pp. 200–205, 2003.
- [18] H. Gürçay, D. Çoker, and A. H. Eş, "On fuzzy continuity in intuitionistic fuzzy topological spaces," J. *Fuzzy Math.*, vol. 5, pp. 365–378, 1997.

Yeon Seok Eom

Lecturer of Chungbuk National University Research Area: fuzzy topology, general topology. E-mail : math1518@naver.com

Seok Jong Lee

Professor of Chungbuk National University Research Area: fuzzy topology, general topology. E-mail : sjl@cbnu.ac.kr