DOI QR코드

DOI QR Code

Physiologically Active Components and Antioxidant Capacity of Grapevine Leaves at Growth Stages

생육단계별 포도 잎의 생리활성 성분 및 항산화능

  • 김정현 (영남대학교 식품영양학과) ;
  • 최수경 (영남대학교 식품영양학과) ;
  • 유영산 (대구가톨릭대학교 생명자원학부) ;
  • 윤광서 (영천시 농업기술센터) ;
  • 서정숙 (영남대학교 식품영양학과)
  • Received : 2012.09.05
  • Accepted : 2012.09.28
  • Published : 2012.12.31

Abstract

This study was conducted to investigate physiologically active components and antioxidant capacity of grapevine leaves at growth stages. The leaves from two strains of grapevine, 'Campbell Early' and 'Rosario Bianco', were collected at five different growth stages (leafing, blossom, fruiting, coloring, and maturity). Total flavonoid content was higher in leafing stage than the other stages and gradually decreased during growing. Total phenol content was higher in 'Campbell Early' than in 'Rosario Bianco'. Hydroxyl radical scavenging ability increased in the leafing stage and decreased during growing. The electron donating ability was higher in 'Campbell Early' then 'Rosario Bianco' until blossom stage. Leaves from 'Campbell Early' showed higher total antioxidant capacity than those from 'Rosario Bianco'. According to the above results, grapevine leaves until the blossom stage would possess strong antioxidant activity by physiologically active components such as polyphenol compounds. Therefore, these results suggest that young grapevine leaves can be used as materials for the development of functional foods.

본 연구에서는 포도 잎의 품종별, 재배시기별 생리활성 효과를 분석하여 포도 잎의 자원화에 기여할 수 있는 기초자료를 제공하고자 하였다. 사용된 포도 잎은 캠벨얼리와 로자리오비앙코 품종으로 생육단계별로 전엽기, 개화기, 결실기, 착색기 및 성숙기로 분류하여 포도 잎의 생리활성의 차이를 분석하였다. 수분과 조단백질 함량은 생육단계별로 유의적으로 감소하였으나 섬유소의 함량은 시기가 지남에 따라 유의적으로 증가하였다. 총 플라보노이드 함량은 캠벨얼리와 로자리오비앙코 품종 모두에서 전엽기에서 높게 나타났으며, 생육단계가 진행됨에 따라 감소되었다. 총 페놀 함량은 캠벨얼리 품종이 로자리오비앙코 품종에 비해 높은 경향이었다. Hydroxyl radical 소거능은 전엽기에서 가장 높게 나타났으며 생육단계가 지남에 따라 점차 낮은 소거능을 보였다. 포도 잎의 전자공여능은 개화기까지 캠벨얼리 품종이 로자리오비앙코 품종에 비해 높았으며, 총 항산화능은 성숙기를 제외하고는 생육단계별로 캠벨얼리 품종이 로자리오비앙코 품종에 비해 높은 수준을 나타내었다. 본 연구 결과로 미루어 볼 때 특히 개화기 이전의 포도 잎은 폴리페놀 함량이 높으며 강력한 항산화 효능을 가진 것으로 나타나 이 시기의 포도 잎은 건강기능식품의 소재로 산업화하는데 유용한 자원으로 이용될 수 있을 것으로 생각된다.

Keywords

References

  1. KATC, Grape. 2010 Circulation for Main Agricultural Products. Korea Agro-Fisheries Trade Corporation, Gwacheon, Korea. pp. 643-665 (2011)
  2. KCS. Trade Statistics. 08-0806-HS6. Korea Customs Service, Seoul, Korea (2011)
  3. Kim NM, Lee JS. Effect of fermentation period on the qualities and physiological functionalities of the mushroom fermentation broth. J. Korean Soc. Microbiol. 31: 28-33 (2003)
  4. Iacopini P, Baldi M, Storchi P, Sebastiani L. Catechin, epicatechin, quercetin, rutin, and resveratrol in red grape: Content in vitro antioxidant activity and interactions. J. Food Compos. Anal. 21: 589-598 (2008) https://doi.org/10.1016/j.jfca.2008.03.011
  5. Ahn JB. Manufacturing process and food safety of functional food material containing high level of trans-resveratrol with domestic grape and fruit stem. Food Eng. Process 22: 192-197 (2008)
  6. Karthikeyan K, Bai BR, Devaraj SN. Efficacy of grape seed proanthocyanidins on cardioprotection during isoproterenolinduced myocardial injury in rats. J. Cardiovasc. Pharm. 53: 109-115 (2009) https://doi.org/10.1097/FJC.0b013e3181970c01
  7. Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 84: 705-712 (2009) https://doi.org/10.1016/j.lfs.2009.02.026
  8. Chang SW, Shin NS, Song JH, Kim HJ, Lee KY, Rho YT. Production of high-level polyphenol powders from young grape leaves. Korean J. Food Preserv. 16: 714-718 (2009)
  9. Deytieux C, Geny L, Lapaillerie D, Claverol S, Bonneu M, Doneche B. Proteome analysis of grape skins during ripening. J. Exp. Bot. 58: 1851-1862 (2007) https://doi.org/10.1093/jxb/erm049
  10. Lee NR, Choi SJ. Contents of resveratrol in different parts of various grape cultivars. Korean J. Food Preserv. 16: 959-964 (2009)
  11. Gyeongsangbukdo Agricultural Information Database. Variety and distribution of the genus grape. http://db.gba.go.kr/sub02/sub01_view.php?kind_code=16&info_no=534. Accessed Dec. 4, 2011.
  12. AOAC. Official methods of analysis of AOAC. 15th. Chapter 4. Association of Official Analytical Chemists, Washington, DC, USA (1990)
  13. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  14. Singleton VL Jr, Rossi JA, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965)
  15. Gutteridge JM. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides, and benzoate. Biochem. J. 224: 761-767 (1984)
  16. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  18. Lee OS, Moon SW, Kim EJ, Kang BS. Studies on physicochemical and sensory characteristics of new grape leaves tea by roasing treatment. Int. J. Integr. Alter. Med. 4: 17-24 (2008)
  19. Kim BS, Choi OJ, Shim KH. Properties of chemical components of Camellia japonica L. leaves according to picking time. J. Korean Soc. Food Sci. Nutr. 34: 681-686 (2005) https://doi.org/10.3746/jkfn.2005.34.5.681
  20. Kwon YD, Ko EY, Hong SJ, Park SW. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Korean J. Hort. Sci. Technol. 26: 344-349 (2008)
  21. Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GT, Robinson SP. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol. 139: 652-663 (2005) https://doi.org/10.1104/pp.105.064238
  22. Cos P, De Bruyne T, Hermans N, Apers S, Berghe DV, Vlietinck AJ. Proanthocyanidins in health care: Current and new trends. Curr. Med. Chem. 11: 1345-1359 (2004) https://doi.org/10.2174/0929867043365288
  23. Kennedy JA, Matthews MA, Waterhouse AL. Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55: 77-85 (2000) https://doi.org/10.1016/S0031-9422(00)00196-5
  24. Cho YJ, Kim JE, Chun HS, Kim CT, Kim SS, Kim CJ. Contents of resveratrol in different parts of grapes. Korean J. Food Sci. Technol. 35: 306-308 (2003)
  25. Perez FJ, Villegas D, Mejia N. Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of $H_{2}O_{2}$ in grapevine leaves. Phytochemistry 60: 573-580 (2002) https://doi.org/10.1016/S0031-9422(02)00146-2
  26. Maisuthisakul P, Suttajit M, Pongsawatmanit R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100: 1409-1418 (2007) https://doi.org/10.1016/j.foodchem.2005.11.032
  27. Jung SI, Kim YJ, Gal SW, Choi YJ. Antimicrobial and antioxidant activities and inhibition of nitric oxide synthesis of oak wood vinegar. J. Life Sci. 17: 105-109 (2007) https://doi.org/10.5352/JLS.2007.17.1.105
  28. Jung SJ, Lee JH, Song HN, Seong NS, Lee SE, Baek NI. Screening for antioxidant activity of plant medicinal extracts. J. Korean Soc. Appl. Biol. Chem. 47: 135-140 (2004)
  29. Kang YH, Park YK, Oh SR, Moon KD. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J. Food Sci. Technol. 27: 978-984 (1995)
  30. Yook HS, Kim KH, Jang SA. Quality characteristics of grape pomace with different drying methods. J. Korean Soc. Food Sci. Nutr. 39: 1353-1358 (2010) https://doi.org/10.3746/jkfn.2010.39.9.1353
  31. Choi SY, Lim SH, Kim JS, Ha TY, Kim SR, Kang KS, Hwang IK. Evaluation of the estrogenic and antioxidant activity of some edible and medicinal plants. Korean J. Food Sci. Technol. 37: 549-556 (2005)
  32. Li H, Choi YM, Lee JS, Park JS, Yeon KS, Han CS. Drying and antioxidant characteristics of the shiitake (Lentinus edodes) mushroom in a conveyer-type far-infrared dryer. J. Korean Soc. Food Sci. Nutr. 36: 250-254 (2007) https://doi.org/10.3746/jkfn.2007.36.2.250
  33. Ku KM, Kim HS, Kim BS, Kang YH. Antioxidant activities and antioxidant constituents of pepper leaves from various cultivars and correlation between antioxidant activities and antioxidant constituents. J. Appl. Biol. Chem. 52: 70-76 (2009) https://doi.org/10.3839/jabc.2009.013
  34. Kim HS, Kang YH. Antioxidant activity of ethanol extracts of non-edible parts (stalk, stemleaf, seed) from oriental melon. Korean J. Plant Res. 23: 451-457 (2010)

Cited by

  1. Antioxidant, anti-inflammatory, and anti-pruritic effects of grape branch extract vol.48, pp.6, 2016, https://doi.org/10.9721/KJFST.2016.48.6.590
  2. Free Radical Scavenging Ability and Quality Characteristics of Yanggaeng Combined with Grape Juice vol.27, pp.4, 2014, https://doi.org/10.9799/ksfan.2014.27.4.596
  3. Establishment of Pre-Harvest Residue Limit for Pyrimethanil and Methoxyfenozide during Cultivation of grape vol.19, pp.2, 2015, https://doi.org/10.7585/kjps.2015.19.2.81
  4. Antioxidant activity and physiological properties of Moringa (Moringa oleifera Lam.) leaves extracts with different solvents vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.831