DOI QR코드

DOI QR Code

Fragility Analysis of Staggered Wall Structures

격간벽 구조의 취약도 해석

  • 백동걸 (성균관대학교 초고층장대교량학과) ;
  • 권광호 (성균관대학교 건설환경시스템공학과) ;
  • 김진구 (성균관대학교 건설환경시스템공학과)
  • Received : 2012.05.07
  • Accepted : 2012.08.21
  • Published : 2012.10.31

Abstract

Fragility curves show the probability of a system reaching a limit state as a function of some measure of seismic intensity. To obtain fragility curves of six and twelve story staggered wall structures with middle corridor, incremental dynamic analyses were carried out using twenty two pairs of earthquake records, and their failure probabilities for various intensity of seismic load were investigated. The performances of staggered wall structures with added columns along the central corridor and the structures with their first story walls replaced by columns were compared with those of the regular staggered wall structures. Based on the analysis results it was concluded that staggered wall structures with central columns have the largest safety margin for the same level of seismic load.

지진취약도 곡선은 구조물의 피해를 지반가속도에 따른 확률로 나타낸 것으로, 이를 이용하여 구조물의 지진에 대한 손상확률을 추정할 수 있다. 본 연구에서는 6층, 12층 중복도형 격간벽 구조 시스템에 대한 취약도 곡선을 산출하기 위해 22쌍의 지반가속도를 이용하여 증분동적해석(Incremental dynamic analysis)을 수행하고, 다양한 지진강도에 대한 파괴확률을 구하였다. 정형의 격간벽 구조의 해석결과와 1층의 격간벽을 기둥으로 대체한 구조물, 중앙 복도에 기둥이 추가된 구조물의 해석결과를 비교하였다. 취약도 해석결과에 따르면 동일한 수준의 지진하중에 대하여 중앙 복도에 기둥을 추가한 모델이 가장 높은 내진 안전성을 갖는 것으로 나타났다.

Keywords

References

  1. 국토해양부 (2007) 리모델링이 용이한 공동주택 기준, 국토해양부 고시 제2007-456호.
  2. ASCE (2007) Seismic Rehabilitation of Existing Buildings, ASCE Standard ASCE/SEI 41-06, American Society of Civil Engineers, Reston Virginia.
  3. ATC (2005) Quantification of Building Seismic Performance Factors, ATC-63, Applied Technology Council, Redwood City, CA.
  4. Barbat A.H., Pujades, L.G., Lantada, N. (2008) Seismic Damage Evaluation in Urban Areas Using the Capacity Spectrum Method, Soil Dynamics and Earthquake Engineering.
  5. Cornell, C.A., Jalayer, F., Hamburger, R., Foutch, D. (2002) Probabilistic Basis for 200 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines, Structure Eng-ASCE 2002.
  6. Englekirk, R. (2003) Seismic Design of Reinforced and Precast Concrete Building, John Wiley & Sons, Inc.
  7. FEMA (2004) NEHRP Recomended Provisions for seismic Regulations for New Buildings and Other Structures, FEMA 450-1/2003 Edition, Part 2: Commentary, Federal Emergency Management Agency, Washington D.C., USA.
  8. FEMA P695 (2009) Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington D.C., USA.
  9. Fintel, M. (1968) Staggered Transferse wall Beams for Multistory Concrete Buildings, ACI Journal. pp.366-378.
  10. HAZUS-National Institute of Building Sciences (1995) Development of a Standardized Earthquake Loss Estimation Methodology, Federal Emergency Management Agency, Washington D.C., USA.
  11. KBC (2009) 건축구조설계기준, 대한건축학회.
  12. Kim, J., Jun, Y. (2011) Seismic Performance Evaluation of Partially Staggered-wall Apartment Buildings, Magazine of Concrete Research, 63(12), pp.927-939. https://doi.org/10.1680/macr.10.00140
  13. MIDAS Genw (2010) General Structure Design System for Windows, Ver, 7.9.5.
  14. MIDAS SDS (2010) General Structure Design System for Windows, Ver, 3.5.9.
  15. Park, Y.J., Ang, A.H-S, Wen, Y.K. (1987) Response- Based Damaged Assessment of Structures, Earthquake Engineering.
  16. Paulay T., Priestley, M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings.
  17. Perform3D (2006) Nonlinear Analysis and Performance Assessment for 3D Structures-User Guide, Computers & Structures, INC, Berkeley, CA.
  18. PEER (2006) PEER NGA Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, U.S.A.

Cited by

  1. Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis vol.27, pp.6, 2014, https://doi.org/10.7734/COSEIK.2014.27.6.517
  2. Domestic Seismic Design Maps Based on Risk-Targeted Maximum- Considered Earthquakes vol.19, pp.3, 2015, https://doi.org/10.5000/EESK.2015.19.3.093
  3. Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard vol.20, pp.7 Special, 2016, https://doi.org/10.5000/EESK.2016.20.7.485