DOI QR코드

DOI QR Code

변동진폭하중 하에서 균열성장 예측의 실험적 검증

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads

  • 임상혁 (한국항공대학교 항공우주 및 기계공학과) ;
  • 안다운 (한국항공대학교 항공우주 및 기계공학과) ;
  • 임체규 (한국항공대학교 항공우주 및 기계공학과) ;
  • 황웅기 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학과)
  • 투고 : 2012.03.23
  • 심사 : 2012.05.25
  • 발행 : 2012.06.30

초록

본 연구에서는 모드 I의 변동진폭하중 하에서 평판의 두께관통 균열성장을 예측하고 예측결과를 실험을 통해 검증하였다. 균열성장 모델을 위해 과하중으로 인한 균열가속과 지연효과를 고려하는 Huang의 모델식을 이용하였다. 실험적 검증을 위해 Al6016-T6 평판 균열을 제작하여 변동하중을 부여하고 균열길이를 일정 주기로 육안 측정하였다. 측정데이터로부터 모델 변수를 추정하기 위해 베이지안 접근법에 기반한 파티클 필터 방법을 이용하였고, 이를 통해 위험크기까지의 미래 거동 및 잔존수명을 확률적으로 예측하였으며, 이를 실제 실험한 결과와 비교하였다. 그 결과 변동하중에 의한 균열지연이 잘 예측됨을 확인하였고, 측정 데이터가 증가할수록 예측된 중앙값(median)이 실제와 점점 더 일치하였다.

In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

키워드

참고문헌

  1. Schwabacher M.A. (2005) Survey of Data-Driven Prognostics, AIAA Infotech@Aerospace Conference, Arlington, Virginia, USA, September, pp.26-29.
  2. Luo J, Pattipati KR, Qiao L., Chigusa S. (2008) Model-based Prognostic Techniques Applied to a Suspension System, IEEE Transactions Systems Man, And Cybernetics-Part A, 38(5), pp.1156- 1168. https://doi.org/10.1109/TSMCA.2008.2001055
  3. Yan J., Lee J. (2007) Hybrid Method for On-Line Performance Assessment and Life Prediction in Drilling Operations, IEEE International Conference on Automation and Logistics, Jinan, Shandong, China, August, pp.18-21.
  4. Orchard, M., Vachtsevanos, G. (2007) A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate, International Journal of Fuzzy Logic and Intelligent Systems, 7(4), pp. 221-227. https://doi.org/10.5391/IJFIS.2007.7.4.221
  5. Cross, R. J., Makeev, A., Armanios, E. (2006) A Comparison of Predictions From Probabilistic Crack Growth Models Inferred From Virkler's Data, Journal of ASTM International, 3(10), pp. 1-11.
  6. Coppe, A., Haftka, R.T., Kim, N.H. (2010) Least Squares-Filtered Bayesian Updating for Remaining Useful Life Estimation, American Institute of Aeronautics and Astronautics, Orlando, FL.
  7. An D., Choi J., Kim N.H. (2011) Statistical Characterization of Damage Growth Parameters and Remaining Useful Life Prediction Using Bayesian Inference, 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Co.
  8. Leem S. H., An D., Choi J. (2011) Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading, Trans. of the KSME(A), 35(10), pp.1299-1306. https://doi.org/10.3795/KSME-A.2011.35.10.1299
  9. Huang, X., Torgeir, M., Cui, W. (2008) An Engineering Model of Fatigue Crack growth under Variable Amplitude Loading, International Journal of Fatigue, 30(1), pp.2-10. https://doi.org/10.1016/j.ijfatigue.2007.03.004
  10. Bayes, T. (1763) An Essay Towards Solving a Problem in the Doctrine of Chances, Philosophical Transactions of the Royal Society, 53(1763), pp. 370-418. https://doi.org/10.1098/rstl.1763.0053
  11. Zio, E., Peloni, G. (2011) Particle Filtering Prognostic Estimation of the Remaining Useful Life of Nonlinear Components, Reliability Engineering and System Safety, 96(3), pp.403-409. https://doi.org/10.1016/j.ress.2010.08.009
  12. Paris P.C., Erdogan F. (1963) A Critical Analysis of Rack Propagation Laws, ASME journal Of Basic Engineerin, 85(4), pp.528-534. https://doi.org/10.1115/1.3656900
  13. Voorwald, H.J.C., Torres, M.A.S., J,C.C.E.P. (1991) Modelling of Fatigue Crack growth Following Overloads, International Journal of Fatigue, 5(5), pp.423-427.
  14. Schijve, J., Broek, D. (1962) Crack Propagation: The Results of a Test Programme Based on a Gust Spectrum with Variable Amplitude Loading, Aircraft Engineering and Aerospace Technology, 34(11), pp.314-316. https://doi.org/10.1108/eb033633