DOI QR코드

DOI QR Code

Experimental Study on Fire-Resistant Characteristics of Bi-Directionally Prestressed Concrete Panel under RABT Fire Scenario

RABT 화재시나리오를 적용한 이방향 프리스트레스트 콘크리트 패널부재의 내화특성에 관한 실험적 연구

  • Yi, Na-Hyun (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Lee, Sang-Won (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (Dept. of Civil and Environmental System Engineering, Yonsei University)
  • 이나현 (연세대학교 사회환경시스템공학부) ;
  • 이상원 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2012.06.29
  • Accepted : 2012.08.31
  • Published : 2012.12.31

Abstract

Recently, major infrastructure such as bridges, tunnels, PCCVs (Prestressed Concrete Containment Vessel), and gas tanks are Prestressed Concrete (PSC) structure types, which improve their safety by using confining effect from prestressing. Generally, concrete is known to be an outstanding fire resistant construction material. Because of this reason, researches related to extreme fire loaded PSC member behaviors are not often conducted even though PSC behavior under extreme fire loading is significantly different than that of ordinary reinforced concrete (RC) behavior. Therefore, in this study, RABT fire loading tests were performed on bi-directionally prestressed concrete panels with $1000{\times}1400{\times}300mm$ dimensions. The prestressed specimens were applied with 430 kN prestressing (PS) force using unbonded PS thread bars. Also, residual strength structural tests of fire tested PSC and ordinary RC structures were performed for comparison. The study results showed that PSC behavior under fire loading is significantly different than that of RC behavior.

현재 교량, 터널, 원전격납구조물, 가스탱크 등의 주요 사회기반 구조물은 긴장재에 의해 구속효과가 적용된 프리스트레스트 콘크리트(PSC) 구조물로 주로 이루어져 있으며, 기술의 발전과 함께 프리스트레스트 콘크리트의 적용범위가 넓어지고 있는 추세이다. 일반적으로 콘크리트 구조물은 다른 구조재료에 비하여 내화성이 뛰어나다고 평가되고 있으나, 긴장재에 의해 구속된 프리스트레스트 콘크리트 구조물의 경우, 고온의 화재에 대한 부재의 거동은 일반 콘크리트 구조물의 거동과는 상이하나, 이와 관련된 국내외 연구 또한 미비한 실정이다. 그러므로, 이 연구에서는 $1400{\times}1000{\times}300mm$ 부재의 양방향에 430 kN의 긴장력을 준 비부착 프리스트레스트 콘크리트 패널부재를 제작하여, 5분 이내에 $1200^{\circ}C$의 화재하중을 가할 수 있는 RABT 화재 시나리오를 적용하여 이방향으로 구속된 프리스트레스트 콘크리트의 내화성능을 실험적으로 검토하였다. 또한 잔존내력구조실험을 수행하여, 화재에 의해 손상을 받은 프리스트레스트 콘크리트 구조물의 잔류응력을 일반 철근콘크리트 구조물과 비교 검토하였다. 이 연구 결과를 통해 화재에 대한 PSC 부재와 RC 부재의 거동은 서로 상이하였음을 확인하였다.

Keywords

References

  1. Park, Y. M., Bae, H. C., Lee, L. H., "Analysis of Reactor Containment Building under Accident Pressure-Temperature Loading," Journal of Korean Society of Civil Engineers, Vol. 15, No, 4, 1995, pp. 755-764 (In Korean).
  2. Song, H. W., Shim, B., Byun, K. J., and Choi, K. R., "A Study on Prediction of Ultimate Pressure Capacity for Prestressed Concrete Reactor Containment Structure," Journal of Korean Society of Civil Engineers, Vol. 24, No. 1A, 2004, pp. 49-55 (In Korean).
  3. Jeon, S. J., Lee, Y. S., Kim, Y. J., and Chung, Y. S., "Fireresistant Capacity of Containment Buildings Subjected to the Postulated Aircraft Crash-induced Fire," Journal of Korean Society of Civil Engineers, Vol. 25, No. 6A, 2005, pp. 1177-1187 (In Korean).
  4. Moon, I. H., Noh, S. H., Lee, S. Y., and Kim, K. J., "Structural Behavior of PSC Reactor Containment Structure under Temperature and Pressure Loading," Journal of Korean Society of Civil Engineers, Vol. 27, No. 6A, 2007, pp. 847-858 (In Korean).
  5. Kim, J. H. J., Yi, N. H., Kim, S. B., and Choi, J. K., "Behavior Analysis of Concrete Structure under Blast Loading: (I) Experiment Procedures," Journal of Korean Society of Civil Engineers, Vol. 29, No. 5A, 2009, pp. 557-564 (In Korean).
  6. Colin, G. B. and Ehab, E., "Fire Tests on Bonded Post-Tensioned Concrete Slabs," Engineering Structures, Vol. 31, 2009, pp. 686-696. (doi: http://dx.doi.org/10.1016/j.engstruct.2008.11.009)
  7. Shin, S. W., Kwon, Y. J., Kim, W. J., Song, H., Shin, Y. S., Yoo, S. H., Lee, S. H., Lee, K. D., Choi, K. H., and Hong, S. G., "Fire Safety Design Guidelines of High Strength Concrete Structures," Architectural Institute of Korea, Kimoondang, 2008, pp. 1-50 (In Korean).
  8. Won, J. P., Choi, S. W., Park, C. G., and Park, H. K., "Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel," Journal of Korean Society of Civil Engineers, Vol. 26, No. 4C, 2006, pp. 283-290 (In Korean).
  9. Korea Concrete Institute, Fire Resistance of Reinforced Concrete Structures, Kimoondang, 2005, pp. 10-45 (In Korean).
  10. Zheng, W. Z., Hou, X. M., Shi, D. S., and Xu, M. X., "Experimental Study on Concrete Spalling in Prestressed Slabs subjected to Fire," Fire Safety Journal, Vol. 45, No. 5, 2010, pp. 283-297. (doi: http://dx.doi.org/10.1016/j.firesaf.2010.06.001)
  11. Solomos, G., Albertimni, C., Labibes, K., Pizzinato, V., and Viaccoz, B., "Strain Rate Effects of Nuclear Steels in Room and Higher Temperatures," Nuclear Engineering and Design, Vol. 229, 2004, pp. 139-149. (doi: http://dx.doi.org/10.1016/j.nucengdes.2003.10.006)
  12. John, A. G., "Transient High-Temperature Prestress Relaxation of Unbonded Prestressing Tendons or Use in Concrete Slabs," Queen's University, Kingston Ontario, Canada, Thesis for Degree of Master of Science, 2009, pp. 1-45.
  13. Kevin, J. N. M., "Post-Fire Assessment of Unbonded Post- Tensioned Concrete Slabs: Strand Deterioration and Prestress Loss," Queen's University, Kingston Ontario, Canada, Thesis for Degree of Master of Science, 2007, pp. 14-103.
  14. Park, H. G., Won, J. P., Kim, J. H. J, and Lim, Y. M., "Evaluation of Fire-Resistance Performance of Shield Tunnel RC Linings Using Polypropylene Fiber," Journal of Korean Society of Civil Engineers, Vol. 25, No. 3C, 2005, pp. 227-233 (In Korean).
  15. Chang, S. H., Choi, S. W., Kwon, J. W., and Bae, G. J., "Evaluation of Fire-induced Damage to Structural Members in Tunnels," Journal of Korean Society of Civil Engineers, Vol. 26, No. 3C, 2006, pp. 219-228 (In Korean).
  16. Jeon, S. J., Jim, B. M., and Kim, Y. J., "Assessment of the Fire Resistance of a Nuclear Power Plant Exposed to Jet Fuel Fire," Civil Expo 2011, Korean Society of Civil Engineers, Il-San KINTEX, 2011, pp. 419-422 (In Korean).
  17. Schmeider, U., "Properties of Materal at High Temperatures-Concrete," 2nd edn, RILEM Report, Gesamthochule Kassel, Germany, 1986, pp. 39-41.
  18. International Tunnelling Association, "Guidelines for Structural Fire Resistance for Road Tunnels," Working Group, No. 6, ITA, 2004, pp. 1.1-2.9.
  19. Japan Concrete Institute, "Fire Safety Committee Report of Concrete Structures (コンク-リト構造物の火災安全性硏 究委員會報告書)," Japan Concrete Institute (日本コンク-リト工學協會), 2002, pp. 10-120 (In Japanese).
  20. Chang, S. H., Choi, S. W., and Yoon, T. G., "Changes of Material Properties on Underground Structures under Fire Loading," Facility Safety, Korea Institute Safety & Technology Corporation, Vol. 32, Winter, 2008, pp. 34-64. (In Korean).

Cited by

  1. Experimental Study on Combined Failure Damage of Bi-directional Prestressed Concrete Panel under Impact-Fire Loading vol.26, pp.4, 2014, https://doi.org/10.4334/JKCI.2014.26.4.429