DOI QR코드

DOI QR Code

Current Status of the Numerical Models for the Analysis of Coupled Thermal-Hydrological-Mechanical Behavior of the Engineered Barrier System in a High-level Waste Repository

고준위폐기물처분장 공학적방벽시스템의 열-수리-역학적 복합거동 해석 모델 개발 현황

  • Received : 2012.08.06
  • Accepted : 2012.10.23
  • Published : 2012.12.30

Abstract

The current status of the computer codes for the analysis of coupled thermal-hydrological-mechanical behavior occurred in a high-level waste repository was investigated. Based on the reported results on the comparison between the predictions using the computer codes and the experimental data from the in-situ tests, the reliability of the existing computer codes was analyzed. The presented codes simulated considerably well the coupled thermal-hydrological-mechanical behavior in the near-field rock of the repository without buffer, but the predictions for the engineered barrier system of the repository located at saturated hard rock were not satisfactory. To apply the current thermal-hydrological-mechanical models to the assessment of the performance of engineered barrier system, a major improvement on the mathematical models which analyze the distribution of water content and total pressure in the buffer is required.

현재까지 개발된 고준위폐기물 심지층처분장의 열-수리-역학적 복합거동 해석을 위한 전산 코드의 현황을 조사하고, 문헌에 보고된 각 코드에 의한 계산치와 현장실험 측정치의 비교 결과를 이용하여, 기존 전산 코드들의 신뢰도를 분석하였다. 개발된 전산코드들은 완충재가 없는 처분장에서는 붕괴열에 따른 암반의 열-수리-역학적 거동을 비교적 잘 모사하였으나, 포화 경암층에 위치한 완충재가 존재하는 처분장의 공학적방벽시스템 내에서 일어나는 열-수리-역학적 복합거동의 예측은 만족스럽지 못하였다. 현재 제안된 열-수리-역학적 복합거동 해석모델을 고준위폐기물 처분장 공학적방벽시스템의 거동 해석에 적용하기 위해서는 완충재 내의 수분함량 및 전 압력 분포를 보다 정교하게 모사할 수 있도록 수학적 모델의 개선이 필요하다.

Keywords

References

  1. H.J. Choi, J.Y. Lee, D.G. Cho, S.K. Kim, S.S. Kim, K.Y. Kim, J.T. Jeong, M.S. Lee, J.W. Choi, J.W. Lee, K.S. Chun, P.O. Kim, Korean reference HLW disposal system, Korea Atomic Energy Research Institute Report, KAERI/TR-3563/2008 (2008).
  2. J. Rutqvist, D. Barr, J.T. Birkholzer, M. Chijimatsu, O. Kolditz, Q. Liu, Y. Oda, W. Wang, and C. Zhang, "Results from an international study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repository", Nuclear Technology, 163, pp. 101-109 (2008). https://doi.org/10.13182/NT08-A3974
  3. A.P.S. Selvadurai and T.S. Nguyen, "Scoping analyses of the coupled thermal-hydrological-mechanical behaviour of the rock mass around a nuclear fuel waste repository", Engineering Geology, 47, pp. 370-400 (1996).
  4. S. Kwon, W.J. Cho, and J.W. Choi, "Status of the international cooperation project, DECOVALEX for the THM coupling analysis", J. of the Korean Radioactive Waste Society, 5, pp. 323-338 (2007).
  5. J. Rutqvist, D. Barr, J. T. Birkholzer, K. Fujisaki, O. Kolditz, Q. Liu, T. Fujita, W. Wang, and C. Zhang, "A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories", Environ. Geol., 57, pp. 1347-1360 (2009). https://doi.org/10.1007/s00254-008-1552-1
  6. J. Rutqvist, D. Barr, J.R. Datta, A. Gens, A. Millard, S. Olivella, C. Tsang, and Y. Tsang, "Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain Drift Scale Test - Comparison of field measurements to prediction of four different numerical models", Int. J. of Rock Mech. Min. Sci., 42, pp. 680-697 (2005). https://doi.org/10.1016/j.ijrmms.2005.03.008
  7. Itasca Consulting Group, FLAC-Fast Lagrangian analysis of continua, version 4.0 (2000).
  8. K. Pruess, C. Oldenburg, and G. Moridis. TOUGH2 user's guide, version 2.0, Lawrence Berkeley National Laboratory Report, LBNL-43134 (1999).
  9. CEA, CASTEM, An objective oriented finite element method framework (2000).
  10. S. Olivella, A. Gens, J. Carrera, and E.E. Alonso, "Numerical formulation for a simulator 'CODE_ BRIGHT' for the coupled analysis of saline media", Engineering Comput., 13, pp. 87-112 (1996). https://doi.org/10.1108/02644409610151575
  11. J. Rutqvist, L. Borgesson, M. Chijimatsu, A. Kobayashi, T.S. Nguyen, L. Jing, J. Noorishad, and C.F. Tsang, "Thermohydromechanics of partially saturated geological media - Governing equation and formulation of four finite element models", Int. J. of Rock Mech. Min. Sci., 38, pp. 105-127 (2001). https://doi.org/10.1016/S1365-1609(00)00068-X
  12. O. Kolditz, S. Bauer, M. Beinhorn, J. Dejonge, K. Kalbacher, C. McDermont, W. Wang, M. Xie, R. Kaiser, and M. Kohlmeier, ROCKFLOW - Theory and user manual, release 3.9, Groundwater Group, Center for Applied Geoscience, University of Tubingen, and Institute of Fluid Mechanics, University of Hannover (2003).
  13. Q. Liu, C. Zang, and X. Liu, "Practical method for coupled THM simulations of the Yacca Mountain and FEBEX case samples for Task D of the DECOVALEX- THMC Project", Proc. GEOPROC 2006 Int. Symp.; 2nd Int. Conf. Coupled Thermo-Hydro- Mechanical- Chemical Processes in Geosystems and Engineering, pp. 220-225, HoHai University, Nanjing, China (2006).
  14. Y. Ohnishi and A. Kobayashi, "THAMES, coupled thermo-hydro-mechanical processes of fractured media", Developments in geotechinical engineering, O. Stephansson, L. Jing, and C.-F. Tsang, eds., pp. 545-549, Elsevier, New York (1996).
  15. A. Gens, M. Sanchez, L. DON. Guimaraes, E.E. Alonso, A. Lloret, S. Olivella, M.V. Villar and F. Huertas, "A full-scale in situ heating test for highlevel nuclear waste disposal: observation, analysis and interpretation", Geotechnique, 59, pp. 377-399 (2009). https://doi.org/10.1680/geot.2009.59.4.377
  16. A,M. Fernandez, A. Muurinen, E. Montarges-Pelletier, N. Jockwer, and P. Rivas, "Geochemical processes in the FEBEX bentonite after a heating and hydration in situ test in the Grimsel URL ", Clays in natural & engineered barriers for radioactive waste confinement, 4th Int. meeting, pp. 727-728, Nantes, France (2010).
  17. E.E. Alonso, J. Alcoverro, F. Coste, L. Malinsky, V. Merrien-Soukatchoff, I. Kadiri, T. Nowak, H. Shao, T.S. Nguyen, A.P.S. Selvadurai, G. Armand, S.R. Sobolik, M. Itamura, C.M. Stone, S.W. Webb, A. Rejeb, M. Tijani, Z. Maouche, A. Kobayashi, H. Kurikami, A. Ito, Y. Sugita, M Chijimatsu, L. Borgesson, J. Hernelind, J. Rutqvist, C.-F. Tsang, and P. Jussila, "The FEBEX benchmark test : case definition and comparison of modelling approaches", Int. Journal of Rock Mech. Min. Sci., 42, pp. 611-638 (2005). https://doi.org/10.1016/j.ijrmms.2005.03.004
  18. C. Andersson, I. Barcena, N. Bono, L. Boergesson, P. Cleall, T. Forsmark, D. Gunnarsson, L.-E. Johannesson, A. Ledesma, L. Liedtke, A. Luukkonen, K. Pedersen, I. Puigdomenech, R. Pusch, I. Rhen, T. Rothfuchs, T. Sanden, J.-L. Sineriz, Y. Sugita1, C. Svemar, H. Thomas. Full-scale testing of the KBS- 3V concept for the geological disposal of high-level eadioactive waste, Prototype Repository, Final report, EUR 21924 (2005).
  19. R. Pusch. Comparison of results from THMCB modelling of buffer, backfill and rock with measured data from Prototype Repository, International Project Report, IPR-04-11 (2004).
  20. A. Gens, A. Ledesma, P. Pusch, and L. Borgesson, "THMC Processes in engineered barriers : The experience from Febex and Prototype Projects", Euradwaste'04 Conference, Luxembourg (2004).
  21. P.J. Cleall, T.A. Melhuish, and H.R. Thomas, "Modelling in the three-dimensional behaviour of a prototype nuclear waste repository", Engineering Geology, 85, pp. 212-220 (2006). https://doi.org/10.1016/j.enggeo.2005.09.045
  22. H.R. Thomas and Y. He, "Modelling the behaviour of unsaturated soil using an elastic constitutive relationship", Geotechnique, 48, pp. 589-603 (1998) https://doi.org/10.1680/geot.1998.48.5.589
  23. H.R. Thomas and P.J. Cleall, "Inclusion of extensive clay behavior in coupled thermo hydraulic mechanical models", Engineering Geology, 54, pp. 93-108 (1999). https://doi.org/10.1016/S0013-7952(99)00065-4
  24. G.J. Chen and A. Ledesma, "Coupled thermohydromechanical modelling of the full-scale in situ test Prototype Repository", J. of Geotechnical and Geoenvironmental Engineering, 135, pp. 121-132 (2009). https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(121)
  25. J. Rutqvist and C.F. Chang, "Analysis of thermalhydrologic- mechanical behavior near as emplacement drift at Yacca Mountain", J. Containment Hydrol., 62-63, pp. 637-652 (2003). https://doi.org/10.1016/S0169-7722(02)00184-5
  26. T.S. Nguyen, L. Bögresson, M. Chijimatsu, J. Rutqvist, T. Fujita, J. Hernelind, A. kobauashi, Y. Onishi, M. Tanaka, and L. Jing, "Hydro-mechanical response of a fractured rock mass to excavation of a test pit - the Kamaishi mine experiment in Japan", Int. J. Rock Mech. Min. Sci., 38, pp. 78-94 (2001).
  27. J. Rutqvist, M. Chijimatsu, L. Jing, J. de Jonge, M. Kohlmeier, A. Millard, T.S. Nguyen, A. Rejeb, M. Souley, Y. Sugita, and C.F. Tsang, "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 3: Effects of THM coupling in fractured rock", Int. J. Rock Mech. Min. Sci., 42, pp. 745-755 (2005). https://doi.org/10.1016/j.ijrmms.2005.03.012
  28. M. Chijimatsu, T.S. Nguyen, L. Jing, J. de Jonge, M. Kohlmeier, A. Millard, A. Rejeb, J. Rutqvist, M. Souley, and Y. Sugita, "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of the results", Int. J. Rock Mech. Min. Sci., 42, pp. 720-730 (2005). https://doi.org/10.1016/j.ijrmms.2005.03.010

Cited by

  1. Deep Geological Disposal of High-Level Radioactive Wastes and Coupled Thermal-Hydraulic-Mechanical-Chemical Analysis vol.54, pp.4, 2017, https://doi.org/10.12972/ksmer.2017.54.4.319