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NOMALIZERS OF NONNORMAL SUBGROUPS

OF FINITE p-GROUPS

Qinhai Zhang and Juan Gao

Abstract. Assume G is a finite p-group and i is a fixed positive integer.
In this paper, finite p-groups G with |NG(H) : H| = pi for all nonnormal
subgroups H are classified up to isomorphism. As a corollary, this answers

Problem 116(i) proposed by Y. Berkovich in his book “Groups of Prime
Power Order Vol. I” in 2008.

1. Introduction

Assume G is a group and H is a subgroup of G. A simple fact is that H◁G
if and only if NG(H) = G. H is called self-normalizing if NG(H) = H; H
is called an abnormal subgroup if g ∈ ⟨H,Hg⟩ for all g ∈ G. R. W. Carter
[3] proved an abnormal subgroup must be a self-normalizing. Obviously, the
concept of abnormal subgroups (self-normalizing) is an extreme case of normal
subgroups. A. Fattahi [4] determined finite groups with normal and abnor-
mal subgroups (self-normalizing). Since then, Zhang [11, 12, 13, 14] replaced
the condition “normal” in [4] by quasinormal, s-quasinormal, seminormal and
s-seminormal, respectively, and determined finite groups with quasinormal (s-
quasinormal, seminormal and s-seminormal, respectively) and abnormal sub-
groups (self-normalizing).

It is natural to ask that if the condition “self-normalizing” in [4] is replaced
by “|NG(H) : H| = p1p2 · · · ps”, where pi is a prime and s is a positive integer,
then what can be said about finite groups G with |NG(H) : H| = p1p2 · · · ps
for nonnormal subgroups H? It turned out that such groups must be groups
of prime power order, i.e., finite p-groups. In this paper, we classified finite
p-groups G with |NG(H) : H| = pi for nonnormal subgroups H, where i is a
fixed positive integer. As a corollary, this answers Problem 116(i) proposed by
Y. Berkovich in his book “Groups of Prime Power Order Vol. I” in 2008.
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Problem 116(i). Classify the p-groups such that |NG(H) : H| = p for all
nonnormal subgroups H < G.

For convenience, we introduce the following symbols.
S1 = {G | G with |NG(H) : H| = p for nonnormal subgroups H of G};
S2 = {G | G with |NG(H) : H| = p2 for nonnormal subgroups H of G};
S3 = {G | G with |NG(H) : H| = pi for nonnormal subgroups H of G,

i ≥ 3}.
Gn denotes the nth term of the lower central series of a groups G. M ⋖ G

denotes M is a maximal subgroup of a group G. In this paper G denotes a
finite p-group.

Let G be a finite p-group. For a positive integer i, we define Ωi(G) = ⟨a ∈
G | api

= 1⟩, and ℧i(G) = ⟨api | a ∈ G⟩.

2. Preliminaries

Definition. Assume G is a finite nonabelian group. G is called minimal non-
abelian if every proper subgroup ofG is abelian; G is said to be a meta-Hamilton
group if every proper subgroup of G is abelian or normal. A subgroup H of a
group G is called fully-normal if K ⊴G provided K ≤ H.

Definition. Assume A and B are subgroups of a group G. If G = AB and
[A,B] = 1, then G is called a central product of A and B, denoted by A ∗B.

Definition. Assume that P is a group theoretic property. P is called inher-
itable by subgroups if a group G is a P-group, then every subgroup H of G
is also a P-group; P is called inheritable by quotient groups if a group G is a
P-group, then every quotient group G/N is also a P-group.

Definition. Assume G is a group of order pn, n ≥ 2. G is called a group of
maximal class if c(G) = n − 1; G is called metaabelian if G′′ = 1; G is called
metacyclic if G has a cyclic normal subgroup N such that G/N is cyclic; G

is called ps-abelian if (ab)
ps

= ap
s

bp
s

for any a, b ∈ G, where s is a positive
integer.

Lemma 2.1 ([5, p. 361, 14.2 Hilfssatz]). Assume G is a group of order pn of
maximal class. Then

(1) |G/G′| = p2, G′ = Φ(G) and d(G) = 2;
(2) |Gi/Gi+1| = p, i = 2, 3, . . . , n− 1;
(3) for i ≥ 2, Gi is the unique normal subgroup of order pn−i of G;
(4) if N ⊴G, |G/N | ≥ p2, then G/N is also a p-group of maximal class;
(5) for 0 ≤ i ≤ n− 1, Zi(G) = Gn−i;
(6) assume p > 2. If n > 3, then there does not exist any cyclic normal

subgroup of order p2.

Lemma 2.2 ([8]). Assume G is a minimal nonabelian p-group. Then G is one
of the following groups:

(1) Q8;
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(2) Mp(n,m) = ⟨a, b | ap
n

= bp
m

= 1, ab = a1+pn−1⟩, n ≥ 2,m ≥ 1;
(metacyclic)

(3) Mp(n,m, 1) = ⟨a, b, c | apn

= bp
m

= cp = 1, [a, b] = c, [c, a] = [c, b] =
1⟩, n ≥ m. If p = 2, m+ n ≥ 3 (non-metacyclic).

Lemma 2.3 ([6]). Assume G is a finite p-group. If G/N ∼= Mp(n,m), where
N ≤ Z(G) and |N | = p, then G is one of the following mutually non-isomorphic
groups:

I. |G′| = p
(1) minimal nonabelian p-groups;
(2) direct product of a minimal nonabelian p-group and Cp;
II. |G′| = p2

c(G) = 2

(1) ⟨a, b | apn+1

= bp
m

= 1, [a, b] = ap
n−1⟩, n ≥ 3,m ≥ 2;

(2) ⟨a, b | apn+1

= 1, bp
m

= ap
n

, [a, b] = ap
n−1⟩,m > n ≥ 3;

c(G) = 3
(3) ⟨a, b | a8 = b2

m

= 1, [a, b] = a2⟩;
(4) ⟨a, b | a8 = b2

m

= 1, [a, b] = a−2⟩;
(5) ⟨a, b | a8 = 1, b2

m

= a4, [a, b] = a−2⟩;
(6) ⟨a, b | ap3

= bp
m

= 1, [a, b] = ap⟩, p ≥ 3,m ≥ 2;

(7) ⟨a, b | ap3

= 1, bp
m

= ap
2

, [a, b] = ap⟩, p ≥ 3,m ≥ 3.

Lemma 2.4 ([10]). Q8 ∗Q8
∼= D8 ∗D8.

Lemma 2.5 ([10, p. 51, 2.5.5]). Assume G is a nonabelian 2-group. If |G :
G′| = 4, then G is of maximal class.

Lemma 2.6 ([9]). Assume G is a metaabelian group, a, b ∈ G and m,n are
positive integers. Then

[am, bn] =
m∏
i=1

n∏
j=1

[ia, jb](
m
i )(

n
j),

(ab−1)m = am

 ∏
i+j≤m

[ia, jb](
m
i+j)

 b−m,

where i, j are integers and satisfy i+ j ≤ m.

Lemma 2.7 ([2, p. 73, Lemma 4.2]). Assume G is a p-group and |G′| = p.
Then G = (A1∗A2∗· · ·∗As)Z(G), where A1, A2, . . . , As are minimal nonabelian
p-groups.

Lemma 2.8 ([7, p. 370, Lemma 3.2]). Assume G is a finite p-group of order
≥ p3, m > 1 and p > 2. Then all nonnormal subgroups of G are of order pm if
and only if G ∼= Mp(n,m), where m ≤ n.
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Lemma 2.9 ([7]). Assume G is a finite non-Dedekind p-group. Then all non-
normal subgroups of G are of order p if and only if G is one of the following
groups:

(1) Mp(m, 1);
(2) Mp(1, 1, 1) ∗ Cpn ;
(3) D8 ∗Q8.

Lemma 2.10 ([15, Lemma 2.4]). Assume E is a minimal nonabelian subgroup
of a finite p-group. If [G,E] = E′, then G = E ∗ CG(E).

Lemma 2.11 ([15, Proposition 2.5]). Assume G is a finite p-group and |G′| =
p. If H ≤ G and H ≰ Z(G), then H ⊴ G if and only if G′ ≤ H.

Lemma 2.12. Assume G is a finite non-Dedekind group. If every nonnormal
subgroup H of G satisfies |NG(H) : H| = p1p2 · · · ps, where pi is a prime and
s is a positive integer, then p1 = p2 = · · · = ps = p. That is, G is a p-group.

Proof. By hypothesis we have G is nilpotent. Since G is non-Dedekind, there
exists Pi ∈ Sylpi

(G) such that Pi is non-Dedekind. Assume G = Pi ×K. Since

Pi is non-Dedekind, there exists H < Pi and H ⋬ Pi. Moreover, H ⋬ G.
Since (|H|, |K|) = 1, NG(H) = NPi(H) × K. It follows that |NG(H) : H| =
|NPi(H) : H||K| = pi

xi |K|. Since H × K ⋬ G, NG(H × K) = NG(H). It
follows that |NG(H × K) : H × K| = |NPi(H) : H| = pi

xi . By hypothesis
again, we have K = 1. Thus G = Pi. Assume p = pi. Then G is a p-group. □

Lemma 2.13. (1) If G ∈ S1, then H ∈ S1 for H ≤ G.
(2) If G ∈ Si, then G/N ∈ Si for N ⊴G, where i ≥ 1

Proof. (1) AssumeH ≤ G andK ≤ H. IfK ⋬ H, thenK ⋬ G. By hypothesis,
|NG(K) : K| = p. Since |NH(K) : K| ≤ |NG(K) : K| and K < NH(K),
|NH(K) : K| = p. So H ∈ S1.

(2) Assume N ⊴ G and H/N ⋪ G/N . Then H ⋬ G. It follows that
|NG/N (H/N) : H/N | = |NG(H)/N : H/N | = |NG(H) : H| = pi. Thus
G/N ∈ Si. □

3. Classifying S1

Lemma 3.1. A finite group G is a Dedekind group if and only if all cyclic
subgroups of G are normal.

Lemma 3.2. A subgroup N of a finite group G is fully-normal if and only if
all cyclic subgroups of N are normal in G.

Lemma 3.3. Assume G is a finite p-group. If |G| ≤ p3, then G ∈ S1.

Lemma 3.4. Assume G is a minimal nonabelian p-group and |G| ≥ p4. If
G ∈ S1, then G ∼= Mp(2, 2).
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Proof. By Lemma 2.2, G ∼= Mp(n,m, 1) or G ∼= Mp(n,m). If G ∼= Mp(n,m, 1),
then by hypothesis we have n + m + 1 ≥ 4. From n ≥ m we get n ≥ 2. Let
G = ⟨a, b, c | apn

= bp
m

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1⟩. Obviously,
⟨b⟩ ⋬ G. On the other hand, NG(⟨b⟩) ≥ ⟨ap⟩ × ⟨c⟩ × ⟨b⟩. Thus |NG(⟨b⟩) :
⟨b⟩| ≥ pn ≥ p2, a contradiction. Assume G ∼= Mp(n,m). If n ≥ 3, then

let G = ⟨a, b | ap
n

= bp
m

= 1, [a, b] = ap
n−1⟩. Obviously, ⟨b⟩ ⋬ G. On

the other hand, NG(⟨b⟩) ≥ ⟨ap⟩ × ⟨b⟩. Thus |NG(⟨b⟩) : ⟨b⟩| ≥ pn−1 ≥ p2, a

contradiction. So n = 2. If m ≥ 3, then let G = ⟨a, b | ap2

= bp
m

= 1, [a, b] =

ap⟩, where ⟨abpm−2⟩ ⋬ G, o(⟨abpm−2⟩) = p2. But NG(⟨abp
m−2⟩) = ⟨a⟩×⟨bp⟩. So

|NG(⟨abp
m−2⟩) : ⟨abpm−2⟩| ≥ pm−1 ≥ p2, a contradiction. So m = 2. It follows

that G ∼= Mp(2, 2). □

Theorem 3.5. Assume G is a finite p-group, p > 2 and |G| ≥ p4. Then
G ∈ S1 if and only if G is abelian or G ∼= Mp(2, 2).

Proof. ⇐=: If G is abelian, the conclusion is true. Assume G ∼= Mp(2, 2).
Since Ω1(G) = Z(G), all subgroups of order p are normal. Obviously, all
subgroups of order p3 are normal. So if H ⋬ G, then |H| = p2. It follows that
H < NG(H) < G. Thus |NG(H) : H| = p. That is, G ∈ S1.

=⇒: We use induction on |G|. If |G| = p4 andG ∈ S1, then we can proveG is
abelian or G ∼= Mp(2, 2). The conclusion is true. Assume the conclusion is true
for groups of order < |G|. Since G is a p-group, there exists N ≤ G′∩Z(G) and
|N | = p. By Lemma 2.13 and |G/N | < |G|, we have, by induction hypothesis,
G/N is abelian or G/N ∼= Mp(2, 2).

If G/N ∼= Mp(2, 2), then |(G/N)′| = |G′N/N | = |G′/G′ ∩N | = |G′/N | = p.

Thus |G′| = p2. By Lemma 2.3, G ∼= ⟨a, b | ap3

= bp
2

= 1, [a, b] = ap⟩. Thus
⟨bp⟩ ⋬ G, |⟨bp⟩| = p. But NG(⟨bp⟩) = ⟨ap, b⟩ ∼= Mp(2, 2). Thus |NG(⟨bp⟩) :
⟨bp⟩| = p3, a contradiction.

If G/N is abelian, then G is abelian or nonabelian. If G is nonabelian, then
|(G/N)′| = |G′N/N | = |G′/G′ ∩N | = |G′/N | = 1. So |G′| = p. By Lemma
2.7, G ∼= A1 ∗ A2 ∗ · · · ∗ AsZ(G), where Ai is minimal nonabelian. Assume
G = A1 ∗K without loss of generality. If K ≰ A1, then there exists g ∈ K\A1

such that NG(H) ≥ ⟨NA1(H), g⟩ for any H ⋬ A1. Thus |NG(H) : H| ≥ p2, a
contradiction. It follows that K ≤ A1. That is, G = A1. By Lemma 3.4 we
get G ∼= Mp(2, 2). □

Lemma 3.6. Assume G is a 2-group of maximal class. Then
(i) G/Z(G) ∼= D2n−1 ;
(ii) every maximal subgroup of G is cyclic or of maximal class.

Proof. By [5, Chapter III, 11.9b Satz], G is isomorphic to one of the following:
D2n , Q2n or SD2n . It is straightforward by a simple calculation. □

Theorem 3.7. Assume G is a group of order 2n. Then G ∈ S1 if and only if
G is one of the following mutually non-isomorphism groups
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I. Dedekind 2-groups;
II. 2-groups of maximal class;

III. ⟨a, b | a2n−2

= b4 = 1, [a, b] = a−2⟩;
IV. ⟨a, b | a2n−2

= b4 = 1, [a, b] = a−2+2n−3⟩.

Proof. ⇐=: If G is a 2-group of maximal class, we prove G ∈ S1.
Assume H ⋪ G. If |G : H| = 22, then |NG(H) : H| = 2. Assume |G : H| ≥

23 without loss of generality.
Assume G is a counterexample of the smallest order. Then there exists

H ⋬ G such that |NG(H) : H| > 2. Since NG(H) < G, there exists M ⋖ G
such that NG(H) ≤ M . By Lemma 3.6 we get M is cyclic or a 2-group of
maximal class. If M is cyclic, then H ⊴ G, a contradiction. So M is a 2-group
of maximal class. IfH ⊴ M , then |M : H| ≥ 22 by |G : H| ≥ 23. By Lemma 2.1
there exists i such that H = Mi. Thus HcharM ⊴ G. It follows that H ⊴ G,
a contradiction. Thus H ⋬ M . Since G is a counterexample of the smallest
order, |NM (H) : H| = 2. On the other hand, NM (H) = NG(H)∩M = NG(H).
So |NG(H) : H| = 2, a contradiction again. So the counterexample does not
exist.

If G is the group of type III, then G/⟨b2⟩ = ⟨a, b | a2
n−2

= b
2
= 1, [a, b] =

a(−2)⟩ ∼= D2n−1 . Let H ⋬ G. Then ⟨b2⟩ ≤ H. If not, let K = ⟨a, b2⟩. Then
H ≤ K. In fact, H ≤ K ⇐⇒ G − H ⊇ G − K ⇐⇒ ∀g ∈ G − K =⇒
g ∈ G − H ⇐⇒ ∀g ∈ G − K =⇒ g /∈ H. Since every element of G has the
form bjai, j = 0, 1, 2, 3, we need to prove bai, b−1ai /∈ H. By calculation, we
have (bai)2 = baibai = b2(ab)iai = b2 for any i. So bai /∈ H. In the same
way, (b−1ai)2 = b−1aib−1ai = b3aib3ai = baibai = b2. So b−1ai /∈ H. Thus
H ≤ K = ⟨a, b2⟩. Moreover, ⟨a, b2⟩ is a fully-normal subgroup of G. In fact,
let g = aib2j for any g ∈ ⟨a, b2⟩. Then ga = (aib2j)a = g, gb = (aib2j)b =
(ab)ib2j = a−ib2j = g−1. So ⟨g⟩ ⊴ G. By Lemma 3.2, ⟨a, b2⟩ is a fully-normal
subgroup of G. It follows that H⊴G, a contradiction. It follows that ⟨b2⟩ ≤ H.

Since H ⋬ G, H ⋬ G. Since G is of maximal class, |NG(H) : H| = 2. Thus

|NG(H) : H| = |NG(H) : H| = 2. That is, the group of type III is in S1.

If G is the group of type IV, considering G/⟨b2⟩ and G/⟨a2n−3

b2⟩, then

G/⟨b2⟩ = ⟨a, b | a2
n−2

= b
2
= 1, [a, b] = a(−2+2n−3)⟩

∼= SD2n−1 ,

G/⟨a2
n−3

b2⟩ = ⟨a, b | a2
n−2

= 1, b
2
= a2

n−3

, [a, b] = a(−2+2n−3)⟩
∼= SD2n−1 .

Let H ⋬ G. We prove ⟨b2⟩ ≤ H or ⟨a2n−3

b2⟩ ≤ H as follows. If not, then,
letting K = ⟨a, b2⟩, we can prove H ≤ K. In fact, H ≤ K ⇐⇒ G − H ⊇
G −K ⇐⇒ ∀g ∈ G −K =⇒ g ∈ G −H ⇐⇒ ∀g ∈ G −K =⇒ g /∈ H. Since
every element of G has the form bjai, j = 0, 1, 2, 3, we need to prove bai, b−1ai /∈
H. By calculation, we have (bai)2 = baibai = b2(ab)iai = b2a(−1+2n−3)iai =
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b2a2
n−3i for any i. If (i, 2) = 1, then (bai)2 = b2a2

n−3

; if 2 | i, then (bai)2 = b2.
So bai /∈ H. In the same way, (b−1ai)2 = b−1aib−1ai = b3aib3ai = baibai. So
b−1ai /∈ H. ThusH ≤ K = ⟨a, b2⟩. Moreover, ⟨a, b2⟩ is a fully-normal subgroup
of G. In fact, let g = aib2j for any g ∈ ⟨a, b2⟩. Then ga = (aib2j)a = g, gb =

(aib2j)b = (ab)ib2j = a−i+2n−3ib2j . If (i, 2) = 1, gb = a−i+2n−3

b2j = g−1+2n−3

;
if 2 | i, gb = a−ib2j = g−1. Thus ⟨g⟩ ⊴ G. By Theorem 3.2, we get ⟨a, b2⟩ is
a fully-normal subgroup of G. Thus H ⊴ G, a contradiction. It follows that

⟨b2⟩ ≤ H or ⟨a2n−3

b2⟩ ≤ H.
Since H ⋬ G, H ⋬ G. Since G is of maximal class, |NG(H) : H| = 2. Thus

|NG(H) : H| = |NG(H) : H| = 2. That is, the group of type IV is in S1.
=⇒: Case 1: d(G) ≥ 3.
Assume G ∈ S1 and G is nonabelian. We prove G is a nonabelian Dedekind

2-group as follows.
Assume G is a counterexample of the smallest order. Since Φ(G) ̸= 1,

we can take N ≤ Φ(G) such that |N | = 2 and N ⊴ G. Thus d(G/N) =
d(G) ≥ 3. By Lemma 2.13, G/N is a nonabelian Dedekind 2-group. Since G
is a counterexample of the smallest order, by Lemma 3.1 there exists a ∈ G
such that ⟨a⟩ ⋬ G. So N ∩ ⟨a⟩ = 1. Since NG(⟨a⟩) ≥ ⟨N, a⟩ = N × ⟨a⟩,
|NG(⟨a⟩) : ⟨a⟩| = 2 by hypothesis. So NG(⟨a⟩) = N × ⟨a⟩. Since G/N is a
Dedekind 2-group, (N × ⟨a⟩)/⟨a⟩⊴G/N . Thus N × ⟨a⟩⊴G.

We calculate |{⟨a⟩g | g ∈ G}| as follows. First, we prove |{⟨a⟩g | g ∈ G}| =
|G : NG(⟨a⟩)| ≥ 22. Since d(G) ≥ 3, |G/⟨a,Φ(G)⟩| ≥ 22. Let G = G/NG(⟨a⟩).
Then Φ(G) = Φ(G/NG(⟨a⟩)) = (Φ(G)NG(⟨a⟩))/NG(⟨a⟩), and Φ(G)NG(⟨a⟩) =
Φ(G)(N × ⟨a⟩) = Φ(G)⟨a⟩ = ⟨a,Φ(G)⟩. So G/Φ(G) ∼= G/(⟨a,Φ(G)⟩). Since
|G : (⟨a,Φ(G)⟩)| ≥ 22, |G/Φ(G)| ≥ 22. That is, d(G) ≥ 2. Therefore |G| ≥ 22,
that is, |G : NG(⟨a⟩)| ≥ 22.

On the other hand, since ⟨a⟩ ≤ N × ⟨a⟩, ⟨a⟩g ≤ (N × ⟨a⟩)g = N × ⟨a⟩. So
⟨a⟩g ⋖N × ⟨a⟩. Since d(N × ⟨a⟩) = 2, N × ⟨a⟩ has three maximal subgroups.
It follows that |{⟨a⟩g | g ∈ G}| ≤ 2, a contradiction. So the counterexample
does not exist.

Case 2: d(G) ≤ 2.
We use induction on |G|. If |G| = 24 and G ∈ S1, then we can prove G is a

Dedekind group, a group of order 24 of maximal class 24 or G ∼= M2(2, 2). The
conclusion is true. Assume the conclusion is true for groups of order < |G|.
Since G is a 2-group, there exists N ≤ G′ ∩ Z(G) and |N | = 2. Since the
condition is inheritable by quotient groups and |G/N | < |G|, G/N is one of the
groups listed in theorem by induction hypothesis.

If G/N is abelian, then, in the same way as that in the case p > 2, we have
G is abelian or G ∼= Q8, D8 or M2(2, 2).

If G/N is a 2-groups of maximal class, then |(G/N)′| = 2n−2 by Lemma
2.1. Since (G/N)′ = G′N/N ∼= G′/G′ ∩ N = G′/N , |G′/N | = 2n−2. Thus
|G′| = 2n−1. It follows that |G/G′| = 4. By Lemma 2.5 we get G is a 2-group
of maximal class.
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If G/N is the group of type III. That is, G ∼= ⟨a, b | a2
n−2

= b
4
= 1, [a, b] =

a(−2)⟩. Assume N = ⟨x⟩. Then G = ⟨a, b | a2
n−2

= xi, b4 = xj , [a, b] =
a−2xk, x2 = 1, [x, a] = [x, b] = 1⟩. Let K = ⟨a−2xk⟩. It is easy to prove G/K is
abelian. Thus G′ ≤ K. But K ≤ G′. So G′ = K. That is, G′ is cyclic. Since

|G′| = 2n−2, it follows by [a, b]
2n−2

= 1 that o(a) = 2n−1 and N = ⟨a2n−2⟩.
Thus we get the following groups:

(a1) ⟨a, b | a2n−1

= 1, b4 = 1, [a, b] = a−2⟩;
(a2) ⟨a, b | a2n−1

= 1, b4 = 1, [a, b] = a−2+2n−2⟩;
(a3) ⟨a, b | a2n−1

= 1, b4 = a2
n−2

, [a, b] = a−2⟩;
(a4) ⟨a, b | a2n−1

= 1, b4 = a2
n−2

, [a, b] = a−2+2n−2⟩;
Obviously, (a1) ∼= the group of type III; (a2) ∼= the group of type IV.

For (a3), let H = ⟨a2n−3

b2⟩. Then |H| = 2 and H ⋬ G, NG(H) = ⟨a, b2⟩⋖G.
Thus |NG(H) : H| ≥ 23, a contradiction. For (a4), let a′ = ab2, b′ = b. Then
(a4) ∼= (a3).

If G/N ∼= the group of type IV, then, by a similar argument as that case of
above paragraph, no new groups occur. The theorem is proved. □

4. Classifying S2

Lemma 4.1. Assume G is a p-group. If G ∈ S2 and |G : H| ≤ p2 for H ≤ G,
then H ⊴G. In particular, if G is nonabelian, then G ∼= Q8 or |G| ≥ p4.

Proof. Assume |G| = pn and |G : H| = p2. If H ⋬ G, then H < NG(H) < G.
Thus |NG(H)| = pn−1. It follows that |NG(H) : H| = p, a contradiction. So
H ⊴G. In particular, if G is nonabelian and |G| = p3, then G ∼= Q8. □

Lemma 4.2. Assume G is a minimal nonabelian p-group and |G| ≥ p4. Then
G ∈ S2 if and only if G ∼= Mp(3,m), where m ≤ 3.

Proof. =⇒: By Lemma 2.2, G ∼= Mp(n,m, 1) or G ∼= Mp(n,m).

If G ∼= Mp(n,m) = ⟨a, b | apn

= 1, bp
m

= 1, [a, b] = ap
n−1⟩, then, if n ≥ 4,

letting H = ⟨b⟩, we get H ⋬ G. But NG(H) ≥ ⟨ap⟩ × ⟨b⟩. Thus |NG(H) :
H| ≥ pn−1 ≥ p3, a contradiction. If n = 2, letting H = ⟨b⟩, we get H ⋬ G.
But |G : H| = p2. This contradicts Lemma 4.1. If G ∼= Mp(3,m) and m ≥ 4,

letting H = ⟨abpm−3⟩, we get H ⋬ G. But NG(H) ≥ ⟨a⟩×⟨bp⟩. Thus |NG(H) :
H| ≥ pm−1 ≥ p3, a contradiction. Thus G ∼= Mp(3,m), where m ≤ 3.

If G ∼= Mp(n,m, 1), then, by a similar argument as that case of above
paragraph, the case does not occur.

⇐=: We check case by case.

If G ∼= Mp(3, 3), then Z(G) = ⟨ap⟩ × ⟨bp⟩, G′ = ⟨ap2⟩,Ω1(G) = ⟨ap2⟩ ×
⟨bp2⟩,Ω2(G) = ⟨ap⟩ × ⟨bp⟩. If |H| = p5, then H ⋖G. Thus H ⊴G. If |H| = p4,
then |H ∩ ⟨a⟩| ̸= 1. If not, |H⟨a⟩| > |G|, a contradiction. It follows that
G′ ≤ H, and H ⊴ G. If |H| = p3 and H ⋬ G, then |H ∩ Z(G)| ≤ p2, and

NG(H) ≥ ⟨H,Z(G)⟩. Thus |NG(H)| ≥ |H||Z(G)|
|H∩Z(G)| ≥

p3·p4

p2 = p5. It follows that
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|NG(H)| = p5, and |NG(H) : H| = p2. If |H| = p2, then H ≤ Ω2(G) ≤ Z(G).
Thus H ⊴G. If |H| = p, then H ≤ Ω1(G) ≤ Z(G). Thus H ⊴G. So G ∈ S2.

If G ∼= Mp(3, 2) or G ∼= Mp(3, 1), then G ∈ S2 by a similar argument as that
case of above paragraph. □
Lemma 4.3. Assume G is a non-Dedekind p-group and |G| ≥ p4, K is a
minimal nonabelian p-group. If G ∼= K × Cp, then G /∈ S2.

Proof. By Lemma 2.2, K ∼= Mp(n,m) or Mp(n,m, 1). If K ∼= Mp(n,m, 1),
then G ∼= K × N , where N ∼= Cp, and G/N ∼= Mp(n,m, 1). By Lemma 2.13

and Lemma 4.2, G /∈ S2. If K ∼= Mp(n,m), then G = ⟨a, b, c | apn

= 1, bp
m

=

1, cp = 1, [a, b] = ap
n−1

, [a, c] = [b, c] = 1⟩. If n ≥ 3, then, by letting H = ⟨b⟩,
we get H ⋬ G. But NG(H) = ⟨ap⟩ × ⟨b⟩ × ⟨c⟩. Thus |NG(H) : H| ≥ pn ≥ p3,
a contradiction. If n = 2, let H ∼= ⟨b, c⟩. Then H ⋬ G. But |G : H| = p2. This
contradicts Lemma 4.1. So G /∈ S2. □
Theorem 4.4. Assume G is a finite p-groups. Then G ∈ S2 if and only if G
is one of the following mutually non-isomorphic groups

(1) Mp(3,m), where m ≤ 3;
(2) Mp(1, 1, 1) ∗ Cp2 ;

(3) ⟨a, b, c | ap2

= bp
2

= cp = 1, [a, b] = 1, [a, c] = bkp, [b, c] = apbhp⟩, if
p > 2, k+4−1h2 is a fixed quadratic non-residue (mod p), where k = 1
or ν, ν is a fixed quadratic non-residue (mod p), h = 0, 1, . . . , p−1

2 . If
p = 2, then k = 1, h = 1;

(4) Q8 × C4;
(5) ⟨a, b, c | a4 = b4 = 1, c2 = b2, [a, b] = 1, [a, c] = b2, [b, c] = a2⟩;
(6) ⟨a, b, c | a4 = b4 = c4 = 1, [a, b] = c2, [a, c] = b2c2, [b, c] = a2b2, [c2, a] =

[c2, b] = 1⟩;
(7) Dedekind groups.

Proof. =⇒: We use induction on |G|. If |G| = p4 and G ∈ S2, then we can
prove G is a Dedekind group, or G ∼= Mp(3, 1) or G ∼= Mp(1, 1, 1) ∗ Cp2 . The
conclusion is true. Assume the conclusion is true for groups of order < |G|.
Since G is a p-group, there exists N ≤ G′ ∩ Z(G) and |N | = p. Since the
condition is inheritable by quotient groups and |G/N | < |G|, G/N is the group
listed in Theorem by induction hypothesis.

Case 1: If G/N ∼= Mp(3,m) = ⟨a, b | ap
3

= 1, b
pm

= 1, [a, b] = ap
2

⟩, then,
by |(G/N)′| = |G′N/N | = |G′/G′ ∩N | = |G′/N | = p, we have |G′| = p2. By

Lemma 2.3, G ∼= ⟨a, b | ap4

= 1, bp
m

= 1, [a, b] = ap
2⟩, where m = 2, 3. Let

H = ⟨bp⟩. Then H ⋬ G. But NG(H) ≥ ⟨ap2

, b⟩. So |NG(H) : H| ≥ p3, a
contradiction.

Case 2: If G/N ∼= Mp(1, 1, 1) ∗ Cp2 = ⟨a, b, c⟩ = ⟨ap
2

= 1, b
p
= 1, cp =

1, [b, c] = ap, [a, b] = 1, [a, c] = 1⟩. Let N = ⟨x⟩. Then G = ⟨a, b, c | ap2

=
xi, bp = xj , cp = xk, [a, b] = xl, [a, c] = xm, [b, c] = apxn, xp = 1, [x, a] = [x, b] =
[x, c] = 1⟩.
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It is easy to prove the following facts:
1. o(a) = p2;
2. G′ ∼= Cp × Cp and c(G) = 2;
3. ℧1(G) ≤ Z(G);
4. j, k are not zero in the same time.
We discuss in two cases: (i) bp ̸= 1 and cp = 1, (ii) bp ̸= 1 and cp ̸= 1.
(i) bp ̸= 1 and cp = 1.

Then G = ⟨a, b, c | ap2

= 1, bp = xj , cp = 1, [a, b] = xl, [a, c] = xm, [b, c] =
apxn, xp = 1, [x, a] = [x, b] = [x, c] = 1⟩. Let H = ⟨a, c⟩. If [a, c] = 1, then
H ⋬ G, and |G : H| = p2. This contradicts Lemma 4.1. Thus m ̸≡ 0 (mod p).

(ia) p > 2.
If [a, b] ̸= 1, then, by letting b1 = bct satisfying l+mt ≡ 0 (mod p), it reduces

to the case [a, b] = 1. Assume G = ⟨a, b, c | ap2

= 1, bp = x, cp = 1, [a, b] =

1, [a, c] = xm, [b, c] = apxn, xp = 1, [x, a] = [x, b] = [x, c] = 1⟩ ∼= ⟨a, b, c | ap2

=

1, bp
2

= 1, cp = 1, [a, b] = 1, [a, c] = bmp, [b, c] = apbnp⟩.
If m ≡ s2 (mod p), then, replacing a by as

−1

, and c by cs
−1

, and letting

h = ns−1, we have G = ⟨a, b, c | ap2

= 1, bp
2

= 1, cp = 1, [a, b] = 1, [a, c] =
bp, [b, c] = apbhp⟩. Replacing a by a−1, and c by c−1, we have h ≤ p−1

2 . Let

H = ⟨abi, c⟩. If hi + 1 ≡ i2 (mod p), in other words, 1 + h2

4 is a quadratic

residue (mod p), then H ∼= Mp(2, 1), and |H| = p3. Obviously, H ⋬ G. But

|G : H| = p2. This contradicts Lemma 4.1. So 1 + h2

4 is a quadratic non-
residue (mod p).

If m ≡ νs2 (mod p), where ν ̸= 0, then, replacing a by as
−1

, c by cs
−1

and

letting h = ns−1, G = ⟨a, b, c | ap2

= 1, bp
2

= 1, cp = 1, [a, b] = 1, [a, c] =
bνp, [b, c] = apbhp⟩. Again replacing a by a−1 and c by c−1, we have h ≤ p−1

2 .

Let H = ⟨abi, c⟩. If hi+ ν ≡ i2 (mod p), in other words, ν + h2

4 is a quadratic

residue (mod p), then H ∼= Mp(2, 1), and |H| = p3. Obviously, H ⋬ G, But

|G : H| = p2. This contradicts Lemma 4.1. So ν + h2

4 is a quadratic non-
residue (mod p).

So, if p > 2 and G/N ∼= Mp(1, 1, 1) ∗ Cp2 , then G is the group of type (3).
(ib) p = 2.
Assume G = ⟨a, b, c | a4 = 1, b2 = x, c2 = 1, [b, c] = a2xn, [a, b] = xl, [a, c] =

x, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. If l = n, then, by letting H = ⟨ab, c⟩, we
have H ⋬ G. But |G : H| = p2. This contradicts Lemma 4.1. So l ̸= n. Thus
we get two groups:

G(11) = ⟨a, b, c | a4 = 1, b2 = x, c2 = 1, [b, c] = a2, [a, b] = x, [a, c] = x, x2 = 1,

[x, a] = [x, b] = [x, c] = 1⟩
∼= ⟨a, b, c|a4 = 1, b4 = 1, c2 = 1, [b, c] = a2, [a, b] = b2, [a, c] = b2⟩,

G(12) = ⟨a1, b1, c1|a14 = 1, b1
2 = x1, c1

2 = 1, [b1, c1] = a1
2x1, [a1, b1] = 1,

[a1, c1] = x1, x1
2 = 1, [x1, a1] = [x1, b1] = [x1, c1] = 1⟩
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∼= ⟨a1, b1, c1|a14 = 1, b1
4 = 1, c1

2 = 1, [b1, c1] = a1
2b1

2, [a1, b1] = 1,

[a1, c1] = b1
2⟩.

Let σ : a1 −→ a, b1 −→ abc, c1 −→ c. Then G(11)
∼= G(12)

∼= the group of
type (3).

(ii) bp ̸= 1 and cp ̸= 1.
If p > 2, then, by letting c1 = cbt satisfying jt + k ≡ 0 (mod p), it reduces

to the case (ia).
If p = 2, assume G = ⟨a, b, c | a4 = 1, b2 = x, c2 = x, [b, c] = a2xn, [a, b] =

xl, [a, c] = xm, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. Since G′ ∼= C2 × C2, l,m are
not zero in the same time.

(ii-1) m = 0, l = 1.
If n = 0, then G ∼= ⟨a, b, c | a4 = 1, b4 = 1, c2 = b2, [b, c] = a2, [a, b] =

b2, [a, c] = 1⟩. Let a1 = a, b1 = c, c1 = b. Then G ∼= the group of type (5). If
n = 1, then G ∼= ⟨a, b, c | a4 = 1, b4 = 1, c2 = b2, [b, c] = a2b2, [a, b] = b2, [a, c] =
1⟩. Let a1 = a, b1 = b, c1 = abc. Then G ∼= G(11)

∼= the group of type (3).
(ii-2) m = 1, l = 0.
Then G = ⟨a, b, c | a4 = 1, b2 = x, c2 = x, [b, c] = a2xn, [a, b] = 1, [a, c] =

x, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. Let a1 = a, b1 = c, c1 = b. Then it reduces
to the case (ii− 1).

(ii-3): m = 1, l = 1.
Then G = ⟨a, b, c | a4 = 1, b2 = x, c2 = x, [b, c] = a2xn, [a, b] = x, [a, c] =

x, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. Let a1 = a, b1 = b, c1 = abc. Then it
reduces to the case (i) or (ii− 1).

Case 3: If G/N ∼= ⟨a, b, c | ap
2

= 1, b
p2

= 1, cp = 1, [a, b] = 1, [a, c] =

b
kp
, [b, c] = apb

hp⟩. Assume N = ⟨x⟩, then G = ⟨a, b, c | ap2

= xi, bp
2

= xj , cp =
xk, [a, b] = xl, [a, c] = bkpxm, [b, c] = apbhpxn, xp = 1, [x, a] = [x, b] = [x, c] =
1⟩.

First, we prove the following facts:
1. o(a) = p2 and o(b) = p2;
2. G′ ∼= C3

p and c(G) = 2;
3. cp ̸= 1.
In fact, since c(G/N) = 2, (G/N)3 = G3N/N = 1. Thus G3 ≤ N ≤ Z(G).

That is, G4 = 1. Since G′′ ≤ G4, G
′ is abelian. Since |(G/N)′| = p2, |G′| = p3.

It follows by cp ∈ Z(G) that [a, cp] = 1, [b, cp] = 1.
By the formula of Lemma 2.6, we have

[bkp, c] = [b, c]
kp
[b, c, b](

kp
2 ) = (apbhpxn)kp[apbhpxn, b]

= akp
2

[ap, b−hp]bhkp
2

[apbhp, b]

= akp
2

bhkp
2

[ap, b]b
hp

= akp
2

bhkp
2

.

It follows that

(1) 1 = [a, cp] = [a, c]
p
[a, c, c](

p
2) = [a, c]

p
[bkp, c](

p
2) = bkp

2

(akp
2

bhkp
2

)(
p
2).
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(2)
1 = [b, cp] = [b, c]

p
[b, c, c](

p
2) = (apbhpxn)p[apbhpxn, c](

p
2)

= ap
2

bhp
2

([ap, c]b
hp

[bhp, c])(
p
2) = ap

2

bhp
2

(bkp
2

ahp
2bh

2p2

)(
p
2).

If p > 2, then it follows from (1) and (2) that [a, cp] = bkp
2

= 1, [b, cp] =

ap
2

bhp
2

= 1. Thus o(a) = p2, o(b) = p2.
If p = 2, then h = k = 1. It follows from (1) and (2) that [a, c2] = a4 = 1,

[b, c2] = b4 = 1. Thus o(a) = 4, o(b) = 4.

Since G
′
= G′ = ⟨ap, bp⟩, G′ = ⟨ap, bp, x⟩ ∼= Cp

3. So l ̸= 0. Since G′ ≤ Z(G),
c(G) = 2. Moreover, assume cp ̸= 1. If not, let H = ⟨c⟩. Then H ⋬ G. But
NG(H) ≥ ⟨ap, bp, c, x⟩. So |NG(H) : H| ≥ p3, a contradiction.

If p > 2, assume G = ⟨a, b, c | ap2

= 1, bp
2

= 1, cp = x, [a, b] = xl, [a, c] =
bkpxm, [b, c] = apbhpxn, xp = 1, [x, a] = [x, b] = [x, c] = 1⟩. Obviously, |G| = p6.
Since c(G) = 2, G is p-abelian. It follows that Ω1(G) = ⟨ap⟩×⟨bp⟩×⟨x⟩ ≤ Z(G).
We will prove G does not satisfy the condition of theorem.

Assume H ≤ G. If |H| = p3, then H is abelian. In fact, if exp(H) = p,
then H = Ω1(G). Thus H is abelian. If exp(H) = p2 and H is not abelian,
then H ∼= Mp(2, 1). This contradicts Ω1(G) ≤ Z(G). If |H| = p5, then
H ◁G. If |H| = p4 and H ⊴G, then G is meta-Hamilton p-group. But by the
classification of meta-Hamilton p-group [1], we know G is not a meta-Hamilton
p-group. Thus there exists a nonnormal subgroup H of order p4. It follows
that |G : H| = p2. But this contradicts Lemma 4.1. So G does not satisfy the
condition of theorem.

If p = 2, assume G = ⟨a, b, c | a4 = 1, b4 = 1, c2 = x, [a, b] = x, [a, c] =
b2xm, [b, c] = a2b2xn, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩, where m,n = 0, 1. If
m = n, then, by letting H = ⟨ac, b⟩ ∼= M2(2, 2), we have |H| = 24. Obviously,
H ⋬ G. But |G : H| = 22. This contradicts Lemma 4.1. If m = 0, n = 1,
then, by letting H = ⟨ab, bc⟩ ∼= M2(2, 2), we have |H| = 24. Obviously, H ⋬ G.
But |G : H| = p2. This contradicts Lemma 4.1 again. If m = 1, n = 0,
Then G ∼= ⟨a, b, c | a4 = 1, b4 = 1, c4 = 1, [a, b] = c2, [a, c] = b2c2, [b, c] =
a2b2, [c2, a] = [c2, b] = 1⟩ ∼= the group of type (6).

Case 4: If G/N ∼= ⟨a, b, c | a4 = 1, b
2
= a2, c4 = 1, [a, b] = a2, [a, c] =

1, [b, c] = 1⟩. Assume N = ⟨x⟩. Then G = ⟨a, b, c | a4 = xi, b2 = a2xj , c4 =
xk, [a, b] = a2xl, [a, c] = xm, [b, c] = xn, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩.

It is easy to prove the following facts:
1. o(a) = 4;
2. G′ ∼= C2 × C2 and m,n are not 0 in the same time.
If k = 0, then G = ⟨a, b, c | a4 = 1, b2 = a2xj , c4 = 1, [a, b] = a2xl, [a, c] =

xm, [b, c] = xn, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. LetH = ⟨anbm, c⟩ ∼= C4×C4.
Then |H| = 24. Obviously, H ⋬ G. But |G : H| = p2. This contradicts Lemma
4.1.

If k = 1, then G = ⟨a, b, c | a4 = 1, b2 = a2xj , c4 = x, [a, b] = a2xl, [a, c] =
xm, [b, c] = xn, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. Let H = ⟨anbm⟩ ∼= C4. Then
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|H| = 22. Obviously, H ⋬ G. But NG(H) ≥ ⟨anbm, c⟩ ∼= C4 × C8. It follows
that NG(H) ∼= C4 × C8. Thus |NG(H) : H| = 23, a contradiction.

Case 5: If G/N = ⟨a, b, c | a4 = b
4
= 1, c2 = b

2
, [a, b] = 1, [a, c] = b

2
, [b, c] =

a2⟩. Assume N = ⟨x⟩. Then G = ⟨a, b, c | a4 = xi, b4 = xj , c2 = b2xk, [a, b] =
xm, [a, c] = b2xn, [b, c] = a2xl, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩.

It is easy to prove the following facts:
1. o(a) = 4 and o(b) = 4;
2. G′ ∼= C3

2 and m = 1;
3. c(G) = 2;
4. Ω1(G) = ⟨a2, b2, c2⟩ ≤ Z(G).
By the above facts we can assume G = ⟨a, b, c | a4 = 1, b4 = 1, c2 = b2xk,

[a, b] = x, [a, c] = b2xn, [b, c] = a2xl, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩. By
discussing the possible values for k, n, l, we know there exists H ∼= M2(2, 2),
and H ⋬ G. But |G : H| = 22. This contradicts Lemma 4.1.

Case 6: If G/N ∼= ⟨a, b, c | a4 = b
4
= c4 = 1, [b, c] = a2b

2
, [a, b] = c2, [a, c] =

b
2
c2, [c2, a] = 1, [c2, b] = 1⟩. Assume N = ⟨x⟩. Then G = ⟨a, b, c | a4 = xi, b4 =

xj , c4 = xk, [b, c] = a2b2xl, [a, b] = c2xm, [a, c] = b2c2xn, [c2, a] = xs, [c2, b] =
xt, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩.

It is easy to prove the following facts:
1. o(a) = 4;
2. o(b) = o(c) = 4;
3. G′ = ⟨a2⟩ × ⟨b2⟩ × ⟨c2⟩ × ⟨x⟩ ∼= C4

2 .
By above facts we can assume G = ⟨a, b, c | a4 = 1, b4 = 1, c4 = 1, [b, c] =

a2b2xl, [a, b] = c2xm, [a, c] = b2c2xn, [c2, a] = xs, [c2, b] = xt, x2 = 1, [x, a] =
[x, b] = [x, c] = 1⟩. If s = t = 0, then, letting H = ⟨a⟩, we have H ⋬ G. But
NG(H) ≥ ⟨a, b2, c2, x⟩. It follows that |NG(H) : H| ≥ 23, a contradiction. If s
and t are not zero in the same time, then, by letting H = ⟨c2⟩, we have H ⋬ G.
But NG(H) ≥ ⟨a2, b2, c, x⟩. It follows that |NG(H) : H| ≥ 23, a contradiction.

Case 7: If G/N is abelian and G is not abelian, then |G′| = p. By Lemma
2.7, G ∼= A1 ∗ A2 ∗ · · · ∗ AsZ(G). Moreover, assume G = A1 ∗ KZ(G). If
K ̸= 1, assume H ⋬ A1, then H ⋬ G. |NA1(H) : H| ≥ p. We observed
K ≤ NG(H), K ∩ A1 ≤ Z(K) and NG(H) ≥ NA1(H) ∗ K. Thus |NG(H) :

H| ≥ |NA1(H)K/H| = |NA1
(H)||K|

|NA1
(H)∩K||H| ≥ |NA1

(H)||K|
|A1∩K||H| ≥ |NA1

(H)||K|
|Z(K)||H| ≥ p3, a

contradiction. Thus K = 1. It follows that G = A1Z(G).
If Z(G) ≤ A1, then G = A1. Thus G ∼= the group of type (1) by Lemma

4.2.
If Z(G) ≰ A1, then there exists g ∈ Z(G)\A1 and g ∈ NG(H). If H ⋬ A1

and |NA1
(H) : H| ≥ p2, then |NG(H) : H| ≥ p3. Thus G /∈ S2. It follows that

|NA1(H) : H| = p. By Lemma 3.4, A1
∼= Mp(2, 1), Mp(1, 1, 1) or Mp(2, 2).

If A1
∼= Mp(2, 1) or Mp(1, 1, 1), then |Z(G)| ≥ p2 since |Z(A1)| = p. On

the other hand, there exists H ⋬ A1 and H ≤ A1. Thus p2 = |NG(H) : H| ≥
|NA1

(H)||Z(G)|
|Z(A1)||H| ≥ |Z(G)|. It follows that |Z(G)| = p2. If Z(G) ∼= Cp × Cp,
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then G ∼= Mp(2, 1) × Cp or G ∼= Mp(1, 1, 1) × Cp. By Lemma 4.3, G /∈ S2. If
Z(G) ∼= Cp2 , then G ∼= the group of type (2).

If A1
∼= Mp(2, 2), then |Z(G)| = p3 by a similar argument as above para-

graph. Since Z(A1) ∼= Cp × Cp ≤ Z(G), Z(G) ∼= Cp × Cp × Cp or Z(G) ∼=
Cp2 × Cp.

If Z(G) ∼= Cp × Cp × Cp, then G ∼= Mp(2, 2)× Cp. By Lemma 4.2, G /∈ S2.

If Z(G) ∼= Cp2 × Cp, then G ∼= Mp(2, 2) ∗ Cp2 = ⟨a, b, c⟩ = ⟨ap2

= 1, bp
2

=

1, cp
2

= 1, [a, b] = ap, [a, c] = [b, c] = 1, cp = aipb
jp⟩. If j ̸≡ 0 (mod p), then,

by letting b1 = aibj , a1 = aj , we have G = ⟨a1, b1, c⟩ = ⟨a1p
2

= 1, b1
p2

=

1, cp
2

= 1, [a1, b1] = a1
p, [a1, c] = [b1, c] = 1, cp = b1

p⟩. Let H = ⟨b1, c⟩. Then
H ⋬ G. But |G : H| = p2. This contradicts Lemma 4.1. If j ≡ 0 (mod p),
then, letting H = ⟨ca−i⟩. Obviously, H ⋬ G. But NG(H) = ⟨a, c, bp⟩. Thus
|NG(H) : H| = p3, a contradiction. That means G /∈ S2.

If G/N ∼= Q8 × C2, then |G′| = 22. Assume N = ⟨x⟩. Then G =
⟨a, b, c, x | a4 = xi, b2 = a2xj , c2 = xk, [a, b] = a2xl, [a, c] = xm, [b, c] = xn, x2 =
1, [x, a] = [x, b] = [x, c] = 1⟩.

Since a−2b2 ∈ Z(G), [a−2b2, b] = 1. we get by calculation [a−2b2, b] =

[a−2, b]b
2

= ([a, b]−2)b
2

= a−4 = 1. Thus o(a) = 4. Since G
′
= ⟨a2⟩, G′ =

⟨a2, x⟩ = ⟨a2⟩ × ⟨x⟩. Moreover, m,n are not zero in the same time. Since
G′ ≤ Z(G), c(G) = 2. So we can assume G = ⟨a, b, c, x | a4 = 1, b2 = a2xj , c2 =
xk, [a, b] = a2xl, [a, c] = xm, [b, c] = xn, x2 = 1, [x, a] = [x, b] = [x, c] = 1⟩.

If k = 0, then there exists H ∼= C4 × C2. It is easy to see that H ⋬ G. But
|G : H| = p2. This contradicts Lemma 4.1. If k = 1, then G ∼= the group of
type (5) by discussing the possible values for j, l,m, n.

⇐=: Case 1: If G ∼= the group of type (1), then the conclusion is true by
Lemma 4.2.

Case 2: If G ∼= the group of type (2), that is, G = ⟨a, b, c | ap2

= bp = cp =
1, [b, c] = ap, [a, b] = [a, c] = 1⟩ ∼= Mp(1, 1, 1) ∗Cp2 , then Z(G) = ⟨a⟩, G′ = ⟨ap⟩.
If |H| = p3, then H⋖G. Thus H⊴G. If |H| = p2, then |H∩⟨a⟩| ̸= 1. It follows
that G′ ≤ H, so H ⊴ G. If |H| = p and H ⋬ G, then NG(H) ≥ ⟨H,Z(G)⟩.
Thus |NG(H)| ≥ p3. It follows that |NG(H)| = p3. So |NG(H) : H| = p2.
That means G ∈ S2.

Case 3: If G ∼= the group of type (3), where p > 2, then G = ⟨a, b, c | ap2

=

bp
2

= cp = 1, [a, b] = 1, [a, c] = bkp, [b, c] = apbhp⟩, k+4−1h2 is a fixed quadratic
non-residue (mod p), where k = 1 or ν, ν is a fixed quadratic non-residue (mod
p), h = 0, 1, . . . , p−1

2 , then G′ = ⟨apbhp, bkp⟩, Z(G) = Φ(G) = ⟨ap⟩ × ⟨bp⟩, G3 =
1, c(G) = 2, and G is p-abelian.

It is easy to prove that all quotient groups of order p4 of G are isomorphic
to Mp(1, 1, 1) ∗ Cp2 .

For any H ⋬ G, we prove |NG(H) : H| = p2 as follows. So G ∈ S2.
If |H| = p3, then |H ∩ G′| ≤ p. If H ∩ G′ = 1, since NG(H) ≥ ⟨H,G′⟩

and |G| = |⟨H,G′⟩|, H ⊴ G. This is a contradiction. If |H ∩ G′| = p, let
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G = G/H ∩G′. Since |G| = p4, G ∼= Mp(1, 1, 1) ∗ Cp2 . Since |H| = p2, by

using the result of Case 2, we have |H ⊴G. Thus H ⊴G, a contradiction.
If |H| = p2, then |H ∩ G′| ≤ p. If |H ∩ G′| = 1, then NG(H) ≥ ⟨H,G′⟩.

Since H ⋬ G, |NG(H)| = p4. Thus |NG(H) : H| = p2. If |H ∩ G′| = p,

let G = G/H ∩G′. Since |G| = p4, G ∼= Mp(1, 1, 1) ∗ Cp2 . If H ⋬ G, then

H ⋬ G. By using the result of Case 2, we have |NG(H) : H| = p2. Thus

|NG(H) : H| = |NG(H) : H| = p2.

If |H| = p, since Ω1(G) = ⟨ap⟩ × ⟨bp⟩ × ⟨c⟩, assume H = ⟨aipbjpck′⟩. If k′ ≡
0 (mod p), then H ⊴G, a contradiction. Thus k′ ̸≡ 0 (mod p), 0 ≤ i, j ≤ p− 1.

(aipbjpck
′
)a

sbtcu = aipbjpck
′
a−k′tpb−hk′tp−kk′sp ∈ ⟨aipbjpck′⟩. We get{

−k′t ≡ 0 (mod p)
−hk′t− kk′s ≡ 0 (mod p).

It follows by k ̸≡ 0 (mod p) that{
t ≡ 0 (mod p)
s ≡ 0 (mod p).

Thus NG(H) = {asbtcu | t ≡ 0 (mod p), s ≡ 0 (mod p)}. So |NG(H)| = p3,
and |NG(H) : H| = p2.

If p = 2, then G ∼= ⟨a, b, c | a4 = 1, b4 = 1, c2 = 1, [a, b] = 1, [a, c] = b2, [b, c] =
a2b2⟩. G′ = ⟨a2⟩ × ⟨b2⟩ = Z(G).

It is easy to prove that all quotient groups of order 24 of G are isomorphic
to Q8 ∗ C4.

For any H ⋬ G, we prove |NG(H) : H| = 22 as follows. So G ∈ S2.
If |H| = 23, then |H ∩ G′| ≤ 2. If |H ∩ G′| = 1, then H ⊴ G by NG(H) ≥

HG′ = G, a contradiction. If |H ∩G′| = 2, let G = G/H ∩G′. Since |G| = 24,
G ∼= Q8 ∗ C4. Since |H| = 22, in the same way as that of Case 2, we have
H ⊴G. Thus H ⊴G, a contradiction.

If |H| = 22, then |H ∩G′| ≤ 2. If |H ∩G′| = 1, then |NG(H)| ≥ |HG′| = 24.
That means |NG(H)| = 24. Thus |NG(H) : H| = 22. If |H ∩ G′| = 2, let
G = G/H ∩G′. Since |G| = 24, G ∼= Q8 ∗C4. But |H| = 2, and H ⋬ G. In the

same way as that of Case 2, we have |NG(H) : H| = 22. Thus |NG(H) : H| =
|NG(H) : H| = 22.

If |H| = 2, then we determine H and NG(H) as follows.
For any g ∈ G, we have g = aibjck. If o(g) = 2, then

(aibjck)
2
= (aibj)

2
[aibj , c−k]c2k

= a2i[ai, b−j ]b2j [ai, c−k][bj , c−k]c2k

= a2ib2jb−2ika−2jkb−2jkc2k

= a2(i−jk)b2(j−ik−jk)c2k = 1.
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It follows that {
i− jk ≡ 0 (mod 2)
j − ik − jk ≡ 0 (mod 2).

Moreover, {
i ≡ 0 (mod 2)
j ≡ 0 (mod 2).

So we can assume H = ⟨a2ib2jck⟩. If k ≡ 0 (mod 2), then H ⊴ G, a
contradiction. Thus k ̸≡ 0 (mod 2), i, j = 0, 1.

Assume asbtcu ∈ NG(H). Then (a2ib2jck)a
sbtcu = a2ib2j(ckb−2ks)

btcu

=
a2ib2jcka−2tkb−2tkb−2ks = a2ib2jcka−2tkb−2tk−2ks ∈ ⟨a2ib2jck⟩. It follows that{

tk ≡ 0 (mod 2)
ks ≡ 0 (mod 2).

Moreover, {
t ≡ 0 (mod 2)
s ≡ 0 (mod 2).

It follows that NG(H) = {asbtcu | t ≡ 0 (mod 2), s ≡ 0 (mod 2)}. Thus
|NG(H)| = 23, and |NG(H) : H| = 22.

Case 4: If G ∼= the group of type (4), that is, G = ⟨a, b, c | a4 = 1, b2 =
a2, c4 = 1, [a, b] = a2, [a, c] = [b, c] = 1⟩, then G′ = ⟨a2⟩, Z(G) = ⟨a2⟩ × ⟨c⟩.

For any H ⋬ G, we prove |NG(H) : H| = 22 as follows. That means G ∈ S2.
If |H| = 23, then |H ∩ ⟨a⟩| ̸= 1. If not, since |H ∩ ⟨a, b⟩| ≥ 2, H ∩ ⟨a, b⟩

must contain an element of order 2. But ⟨a, b⟩ ∼= Q8 has unique element a2

of order 2, so a2 ∈ H, a contradiction. Thus H > G′, that means H ⊴ G, a
contradiction. If |H| = 22, then |H ∩ Z(G)| ≤ 2. But |NG(H)| ≥ |HZ(G)| =
|H||Z(G)|
|H∩Z(G)| ≥ 24, so |NG(H)| = 24. Thus |NG(H) : H| = 22. If |H| = 2, since

Ω1(G) = ⟨a2⟩ × ⟨c2⟩ ≤ Z(G), H ⊴G, a contradiction.
Case 5: If G ∼= the group of type (5), i.e., G = ⟨a, b, c | a4 = 1, b4 = 1, c2 =

b2, [a, b] = 1, [a, c] = b2, [b, c] = a2⟩, then G′ = ⟨a2⟩ × ⟨b2⟩ = Z(G) = Ω1(G),
and so H ∩G′ ̸= 1 for any H ≤ G.

It is easy to prove that all quotient groups of order p4 of G are isomorphic
to Q8 ∗ C4 or Q8 × C2.

For any H ⋬ G, we prove |NG(H) : H| = 22 as follows, That means G ∈ S2.

If |H| = 23, then |H ∩ G′| = 2. Let G = G/H ∩G′. Since |G| = 24,
G ∼= Q8 ∗ C4 or Q8 × C2. If G ∼= Q8 ∗ C4, since |H| = 22, H ⊴G by the same
argument as that of Case 2. So H ⊴G, a contradiction. If G ∼= Q8 × C2, then
H ⊴G. That means H ⊴G, a contradiction.

If |H| = 22, then |H ∩ G′| = 2. Let G = G/H ∩G′. Since |G| = 24,
G ∼= Q8 ∗ C4 or Q8 × C2. If G ∼= Q8 ∗ C4, since |H| = 2, |NG(H) : H| = 22 by

the same argument as that of Case 2. Thus |NG(H) : H| = |NG(H) : H| = 22.

If G ∼= Q8 × C2, then H ⊴G. So H ⊴G, a contradiction.
If |H| = 2, since Ω1(G) = ⟨a2⟩ × ⟨b2⟩ ≤ Z(G), H ⊴G, a contradiction.
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Case 6: If G ∼= the group of (6), i.e., G = ⟨a, b, c | a4 = 1, b4 = 1, c4 =
1, [a, b] = c2, [a, c] = b2c2, [b, c] = a2b2, [c2, a] = [c2, b] = 1⟩, then G′ = ⟨a2⟩ ×
⟨b2⟩ × ⟨c2⟩ = Z(G) = Ω1(G), and so H ∩G′ ̸= 1 for any H ≤ G.

It is easy to prove that all quotient groups of order p5 of G are isomorphic
to the group of type (3).

For any H ⋬ G, we prove |NG(H) : H| = 22 as follows, That means G ∈ S2.

If |H| = 24, then |H ∩ G′| ≤ 22. If |H ∩ G′| = 2, let G = G/H ∩G′. Since
|G| = 25, G ∼= the group of type (3), Since |H| = 23, H ⊴ G by the same
argument as that of Case 3, a contradiction. If |H ∩ G′| = 22, then there
exists N ≤ H ∩G′ and |N | = 2 such that G/H ∩G′ ∼= G/N/H ∩G′/N . Since
G/N ∼= the group of type (3), G/H ∩G′ ∼= the group of type (2) by the same
argument as that of Case 3, Since |H| = 22, H ⊴ G by the same argument as
that of Case 2. So H ⊴G, a contradiction.

If |H| = 23, then |H ∩ G′| ≤ 22. If |H ∩ G′| = 2, let G = G/H ∩G′.
Since |G| = 25, G ∼= the group of type (3). Since |H| = 22 and H ⋬ G,

|NG(H) : H| = 22 by the same argument as that of Case 3. Thus |NG(H) :

H| = |NG(H) : H| = 22. If |H ∩ G′| = 22, then there exists N ≤ H ∩ G′ and
|N | = 2, such that G/H ∩G′ ∼= G/N/H ∩G′/N . Since G/N ∼= the group of
type (3), G/H ∩G′ ∼= the group of type (2) by the same argument as that of
Case 3. Let G = G/H ∩G′ and |H| = 2. Since H ⋬ G, |NG(H) : H| = 22 by

the result of Case 2. Thus |NG(H) : H| = |NG(H) : H| = 22.

If |H| = 22, then |H ∩G′| = 2. Let G = G/H ∩G′. Since |G| = 25, G ∼= the
group of type (3). Since |H| = 2 and H ⋬ G, |NG(H) : H| = 22 by the result

of Case 3. Thus |NG(H) : H| = |NG(H) : H| = 22.
If |H| = 2, since Ω1(G) = ⟨a2⟩× ⟨b2⟩× ⟨c2⟩ ≤ Z(G), H⊴G, a contradiction.
The groups listed in theorem are mutually non-isomorphic, the details are

omitted. □

5. Classifying S3

Theorem 5.1. If G is a non-Dedekind p-group, then G ∈ S3 if and only if G
is one of the following mutually non-isomorphic groups

(1) Mp(i+ 1,m), where m ≤ i+ 1;
(2) Mp(1, 1, 1) ∗ Cpi ;
(3) D8 ∗Q8, (i = 3);
(4) ⟨a, b, c, d | a4 = b4 = c4 = d4 = 1, a2 = d2, b2 = c2, [d, b] = a2, [b, a] =

a2, [c, a] = b2, [d, a] = [c, b] = a2b2, [c, d] = 1⟩, (i = 3).

Proof. =⇒: Case 1. |G′| = p.
Let N1 be a non-normal subgroup of G with minimal order, then all of

maximal subgroups of N1 are normal in G, and N1 is nonnormal in G. Then
N1 cannot be generated by its maximal subgroups, the maximal subgroup of
N1 is unique, thus N1 is cyclic. Let N1 = ⟨b⟩. Since N1 is non-normal in G,
there exists a ∈ G such that [a, b] ̸= 1. Because |G′| = p, we have ⟨a, b⟩ is
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a minimal nonabelian subgroup of G. Let H = ⟨a, b⟩. By Lemma 2.10, we
obtain G = H ∗CG(H). Since H is minimal nonabelian, we have CH(N1)⋖H.
And CG(N1) ≥ CG(H), CG(N1) ≥ CH(N1), thus CG(N1) = NG(N1)⋖G. By
G ∈ S3, we can get N1 is a nonnormal subgroup of G with maximal order, it
follows that all nonnormal subgroups of G are of same order.

If all nonnormal subgroups of G are of order p, by Lemma 2.9, G is one of
following groups:

(1) Mp(i+ 1, 1);
(2) Mp(1, 1, 1) ∗ Cpi ;
(3) D8 ∗Q8(i=3).
If all of nonnormal subgroups of G are of order pm, where m ≥ 2, then

Ω1(G) ≤ Z(G). When p > 2, by Lemma 2.8, we get G ∼= Mp(i+ 1,m), where
m ≤ i + 1. When p = 2, since G = H ∗ CG(H), G ∈ S3, so is H, we can get
H ∼= M2(i + 1,m), where m ≤ i + 1. Assume that CG(H) ⩽̸ H, then there

exists c ∈ CG(H)\H. Let H = ⟨a⟩⋊ ⟨b⟩ and c2
n

= a2
s

b2
t

, n, s, t ≥ 1. We get a
contradiction, thus CG(H) ≤ H, G ∼= M2(i+ 1,m), where m ≤ i+ 1.

If s ≥ 2, we have c1 = c−2n−1

a2
s−1

b2
t−1

/∈ H with order p, then ⟨b, c1⟩ ⋬ G
and |⟨b, c1⟩| ̸= |⟨b⟩|, which is contrary to that all of nonnormal subgroups of G
are of same order.

If s = 1 and t ≥ 2, we have c1 = c−2n−1

ab2
t−1

/∈ H with order p, then
⟨c1⟩ ⋬ G and |⟨c1⟩| ≠ |⟨b⟩|, which is contrary to that all nonnormal subgroups
of G are of same order.

If s = 1 and t = 1, let K = ⟨H, c⟩ = ⟨a2i+1

= b2
m

= 1, [a, b] = a2
i

, c2
n

=
a2b2, [c, a] = [c, b] = 1⟩, where m ≤ i + 1. If i + 1 ≥ 3, we have c1 =

c−2n−1

aba2
i

/∈ H with c1 = c−2n−1

aba2
i

/∈ H with order p, then ⟨c1⟩ ⋬ G
and |⟨c1⟩| ≠ |⟨b⟩|, which is contrary to that all nonnormal subgroups of G are
of order |N1|. If i+ 1 = m = 2, since G ∈ S3 and ⟨b⟩ ⋬ G, we have n ≥ 2 thus
⟨ca⟩ ⋬ G, and |⟨ca⟩| ̸= |⟨b⟩|, which is contrary to that all nonnormal subgroups
of G are of same order.

Case 2. |G′| ≥ p2.
We use induction on |G|. If |G| = p5 and G ∈ S3, then all nonnormal

subgroups of G are of order p, by Lemma 2.9, we can get G ∼= Mp(4, 1),
Mp(1, 1, 1) ∗ Cp3 or D8 ∗Q8. The conclusion is true. Assume the conclusion is
true for groups of order < |G|. Since G is a p-group, there exists N ≤ G′∩Z(G)
and |N | = p. By Lemma 2.13 and |G/N | < |G|, G/N is the group of listed in
Theorem by induction hypothesis.

If G/N ∼= Mp(i + 1,m) = ⟨a, b | ap
i+1

= 1, b
pm

= 1, [a, b] = ap
i

⟩, then it
follows by |(G/N)′| = |G′N/N | = |G′/G′ ∩N | = |G′/N | = p that |G′| = p2.

By Lemma 2.3, G ∼= ⟨a, b|api+2

= 1, bp
m

= 1, [a, b] = ap
i⟩, where m ≥ 2. Let

H = ⟨bp⟩. Obviously, H ⋬ G. But NG(H) ≥ ⟨ap, b⟩. Thus |NG(H) : H| ≥
pi+2, a contradiction.
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If G/N ∼= Mp(1, 1, 1) ∗ Cpi = ⟨a, b, c⟩ = ⟨ap
i

= 1, b
p
= 1, cp = 1, [b, c] =

ap
i−1

, [a, b] = 1, [a, c] = 1⟩, then, letting N = ⟨x⟩, G = ⟨a, b, c | api

= xs, bp =

xj , cp = xk, [a, b] = xl, [a, c] = xm, [b, c] = ap
i−1

xn, xp = 1, [x, a] = [x, b] =
[x, c] = 1⟩. Since |(G/N)′| = |G′N/N | = |G′/G′ ∩N | = |G′/N | = p, |G′| = p2.

Thus G is metaabelian. Since bp ∈ Z(G), 1 = [bp, c] = [b, c]p[b, c, b](
p
2) =

(ap
i−1

xn)p[ap
i−1

xn, b](
p
2) = ap

i

[ap
i−1

, b](
p
2) = ap

i

. Thus o(a) = pi. Since G
′
=

G′ = ⟨api−1⟩, G′ = ⟨api−1

, x⟩ ∼= Cp × Cp. Moreover, l,m are not zero in the

same time. Assume G = ⟨a, b, c | api

= 1, bp = xj , cp = xk, [a, b] = xl, [a, c] =

xm, [b, c] = ap
i−1

xn, xp = 1, [x, a] = [x, b] = [x, c] = 1⟩. Let H = ⟨a⟩. Since
l,m are not zero in the same time, H ⋬ G. But |NG(H)| ≤ pi+2. Thus
|NG(H) : H| ≤ p2 ̸= pi, a contradiction.

If G/N ∼= D8 ∗ Q8 = ⟨a, b, c, d | a4 = 1, b
2
= 1, c4 = 1, c2 = d

2
, a2 =

c2, [a, b] = a2, [c, d] = c2, [a, c] = [a, d] = [b, c] = [b, d] = 1⟩, then, letting
N = ⟨x⟩, G = ⟨a, b, c, d | a4 = xi, b2 = xj , c4 = xk, c2 = d2xl, a2 = c2xm, [a, b] =
a2xn, [c, d] = c2xs, [a, c] = xt, [a, d] = xu, [b, c] = xv, [b, d] = xw, x2 = 1, [x, a] =
[x, b] = [x, c] = [x, d] = 1⟩. Since d−2c2 ∈ Z(G), [d−2c2, d] = 1. On the other

hand, [d−2c2, d] = [c2, d] = [c, d]
2
[c, d, c] = c4. So c4 = 1. Since a2 = c2xm,

a4 = c4. Assume G = ⟨a, b, c, d | a4 = 1, b2 = xj , c4 = 1, c2 = d2xl, a2 =
c2xm, [a, b] = a2xn, [c, d] = c2xs, [a, c] = xt, [a, d] = xu, [b, c] = xv, [b, d] =

xw, x2 = 1, [x, a] = [x, b] = [x, c] = [x, d] = 1⟩. By G
′
= ⟨a2⟩, G′ = ⟨a2, x⟩ ∼=

C2 × C2. Moreover, G′ ≤ Z(G) and exp(G) = 4. By the argument of [15,
Lemma 4.5], G = ⟨a, b, c, d | a4 = b4 = 1, c2 = a2b2, d2 = a2, [a, b] = a2, [c, d] =
a2b2, [a, c] = [b, d] = 1, [b, c] = [a, d] = b2⟩. It is easy to prove that G ∼= the
group of type (4).

If G/N ∼= the group of type (4), then, letting N = ⟨x⟩, G = ⟨a, b, c, d | a4 =
xi, b4 = xj , c4 = xk, d4 = xl, a2 = d2xm, b2 = c2xn, [d, b] = a2xs, [b, a] =
a2xt, [c, a] = b2xr, [d, a] = a2b2xu, [c, b] = a2b2xv, [c, d] = xw, x2 = 1, [x, a] =
[x, b] = [x, c] = [x, d] = 1⟩. Since d−2a2 ∈ Z(G), [d, d−2a2] = 1. On

the other hand, [d, d−2a2] = [d, a2] = [d, a]
2
[d, a, a] = (a2b2xu)

2
[a2b2xu, a] =

a4[a2, b−2]b4[b2, a] = [b2, a]a4b4 = a4b4[b, a]
2
[b, a, b] = b4[a2, b] = b4[a, b]

2
[a, b, a]

= b4a−4. So a4 = b4. It follows by a2 = d2xm that a4 = d4. By b2 = c2xn we
have b4 = c4. Thus a4 = b4 = c4 = d4.

Assume a4 = b4 = c4 = d4 = x. Then it follows by [d, b] = a2xs that
[d, b]

a
= (a2xs)

a
. On the other hand,

[d, b]
a
= [da, ba] = [da2b2, ba2] = [d, ba2]

a2b2

[a2b2, ba2]

= [d, a2]
a2b2

[d, b]
a2·a2b2

[a2b2, a2][a2b2, b] = [d, a2][d, b][a2, b]

= [d, a]
2
[d, a, a][d, b][a, b]

2
[a, b, a] = (a2b2xu)

2
[a2b2xu, a]a2xsa−4

= a4[a2, b−2]b4[b2, a]a2xsa−4 = a4b4[b, a]
2
[b, a, b]a2xsa−4

= a4b4a4[a2, b]a2xsa−4 = [a, b]
2
[a, b, a]a2xs = a2xsx.
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But (a2xs)
a
= a2xs, a contradiction. So a4 = b4 = c4 = d4 = 1. As-

sume G = ⟨a, b, c, d|a4 = b4 = c4 = d4 = 1, a2 = d2xm, b2 = c2xn, [d, b] =
a2xs, [b, a] = a2xt, [c, a] = b2xr, [d, a] = a2b2xu, [c, b] = a2b2xv, [c, d] = xw, x2 =
1, [x, a] = [x, b] = [x, c] = [x, d] = 1⟩. By calculation we have Ω1(G) =
⟨a2, b2, x⟩ ≤ Z(G). If G ∈ S3, then by |G| = 27 we have H ⊴ G for any
H ≤ G and |H| ≥ 24. If |H| = 23, then H = Ω1(G) if exp(H) = 2, and H is
abelian if exp(H) = 22 (If not, H ∼= M2(2, 1), this contradicts Ω1(G) ≤ Z(G)).
It follows that G is a meta-Hamilton p-group. But by checking the classification
of meta-Hamilton p-groups [1] we know there does not exists such a group, a
contradiction.

⇐=: By Lemmas 2.8, 2.9 we have G ∈ S3 for G ∼= one of the groups of type
(1), (2), and (3). If G ∼= the group of type (4), then G′ = ⟨a2⟩×⟨b2⟩ = Z(G) =
Ω1(G).

It is easy to prove that all quotient groups of order 25 of G are isomorphic
to Q8 ∗D8.

For any H ⋬ G, we prove |NG(H) : H| = 23 as follows. Thus G ∈ S3.

If |H| = 24, then |H ∩ Ω1(G)| = 2. Let G = G/H ∩ Ω1(G). Since |G| = 25,
G ∼= the group of type (3). But |H| = 23. It follows by Lemma 2.9 that H⊴G.
So H ⊴G, a contradiction.

If |H| = 23, then |H ∩ Ω1(G)| = 2. Let G = G/H ∩ Ω1(G). Since |G| = 25,
G ∼= the group of type (3). But |H| = 22. It follows by Lemma 2.9 that H⊴G.
So H ⊴G, a contradiction.

If |H| = 22, then |H ∩ Ω1(G)| = 2. Let G = G/H ∩ Ω1(G). Since |G| = 25,
G ∼= the group of type (3). But |H| = 2. It follows by H ⋬ G that H ⋬ G. By

Lemma 2.9 we have |NG(H) : H| = 23. Thus |NG(H) : H| = |NG(H) : H| =
23.

If |H| = 2, since Ω1(G) = ⟨a2⟩ × ⟨b2⟩ = Z(G), H ⊴G, a contradiction. □
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