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NOMALIZERS OF NONNORMAL SUBGROUPS
OF FINITE p-GROUPS

QINHAI ZHANG AND JUAN GAO

ABSTRACT. Assume G is a finite p-group and i is a fixed positive integer.
In this paper, finite p-groups G with |[Ng(H) : H| = p* for all nonnormal
subgroups H are classified up to isomorphism. As a corollary, this answers
Problem 116(i) proposed by Y. Berkovich in his book “Groups of Prime
Power Order Vol. I” in 2008.

1. Introduction

Assume G is a group and H is a subgroup of G. A simple fact is that H <G
it and only if Ng(H) = G. H is called self-normalizing if No(H) = H; H
is called an abnormal subgroup if g € (H,HY) for all ¢ € G. R. W. Carter
[3] proved an abnormal subgroup must be a self-normalizing. Obviously, the
concept of abnormal subgroups (self-normalizing) is an extreme case of normal
subgroups. A. Fattahi [4] determined finite groups with normal and abnor-
mal subgroups (self-normalizing). Since then, Zhang [11, 12, 13, 14] replaced
the condition “normal” in [4] by quasinormal, s-quasinormal, seminormal and
s-seminormal, respectively, and determined finite groups with quasinormal (s-
quasinormal, seminormal and s-seminormal, respectively) and abnormal sub-
groups (self-normalizing).

It is natural to ask that if the condition “self-normalizing” in [4] is replaced
by “|Ng(H) : H| = p1ip2 - -ps”, where p; is a prime and s is a positive integer,
then what can be said about finite groups G with |[Ng(H) : H| = p1ps - - ps
for nonnormal subgroups H? It turned out that such groups must be groups
of prime power order, i.e., finite p-groups. In this paper, we classified finite
p-groups G with |[Ng(H) : H| = p® for nonnormal subgroups H, where i is a
fixed positive integer. As a corollary, this answers Problem 116(i) proposed by
Y. Berkovich in his book “Groups of Prime Power Order Vol. I” in 2008.
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Problem 116(i). Classify the p-groups such that |Ng(H) : H| = p for all
nonnormal subgroups H < G.

For convenience, we introduce the following symbols.

S1 ={G | G with |Ng(H) : H| = p for nonnormal subgroups H of G};

Sy = {G | G with |[Ng(H) : H| = p? for nonnormal subgroups H of G};

S; = {G | G with |[Ng(H) : H| = p' for nonnormal subgroups H of G,
i> 3}

G, denotes the nth term of the lower central series of a groups G. M < G
denotes M is a maximal subgroup of a group G. In this paper G denotes a
finite p-group.

Let G be a finite p-group. For a positive integer i, we define Q;(G) = (a €
G| aP =1), and U;(G) = (a*" | a € G).

2. Preliminaries

Definition. Assume G is a finite nonabelian group. G is called minimal non-
abelian if every proper subgroup of GG is abelian; G is said to be a meta-Hamilton
group if every proper subgroup of G is abelian or normal. A subgroup H of a
group G is called fully-normal if K <G provided K < H.

Definition. Assume A and B are subgroups of a group G. If G = AB and
[A, B] =1, then G is called a central product of A and B, denoted by A x B.

Definition. Assume that P is a group theoretic property. P is called inher-
itable by subgroups if a group G is a P-group, then every subgroup H of G
is also a P-group; P is called inheritable by quotient groups if a group G is a
P-group, then every quotient group G/N is also a P-group.

Definition. Assume G is a group of order p™, n > 2. G is called a group of
maximal class if ¢(G) = n — 1; G is called metaabelian if G = 1; G is called
metacyclic if G has a cyclic normal subgroup N such that G/N is cyclic; G
is called p®-abelian if (ab)ps = P b for any a,b € G, where s is a positive
integer.

Lemma 2.1 ([5, p. 361, 14.2 Hilfssatz]). Assume G is a group of order p"™ of
maximal class. Then
(1) [G/C'| = p?, G’ = B(G) and d(G) =2;
(2) |G1/GZ+1| =D, 1= 273,...,71— ].;
(3) fori>2, G; is the unique normal subgroup of order p"~% of G;
(4) if N <G, |G/N| > p?, then G/N is also a p-group of mazimal class;
(5) for0<i<n-—1, Z;(G) = Gy
(6) assume p > 2. If n > 3, then there does not exist any cyclic normal
subgroup of order p?.

Lemma 2.2 ([8]). Assume G is a minimal nonabelian p-group. Then G is one
of the following groups:

(1) Qs;
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(2) Mp(n,m) = (a,b | a®" = 0" = 1,a® = a'**" V0 > 2m > 1;
(metacyclic)
(3) My(n,m,1) = (a,b,c | a?"

=" =P =1,[a,b] = ¢,[c,a] = [c,b] =
Hyn>m. Ifp=2, m+n>3(

non- metacyclzc)

Lemma 2.3 ([6]). Assume G is a finite p-group. If G/N = My(n,m), where
N < Z(G) and |N| = p, then G is one of the following mutually non-isomorphic
groups:

L|G'[=p

(1) minimal nonabelian p-groups;

(2) direct product of a minimal nonabelian p-group and Cp;

L. |G'| = p?

c¢(G) =2

(1) {a,b|a?" =bP" =1,[a,b] =a?" ),n>3,m>2;
(2) (a,b]a?" =1,0°" = a?" [a,b] =a?" ), m >n > 3;
¢(G)=3

(3) (a,0]a® =0*" =1,[a,b] = a®);

(4) {a,b|a®=0*" =1,[a,0] = a™?);

(5) (a,b|a® =1,b>" =a* [a,b] = a=2);

(6) (a,b ] a” =" =1,[a,b] = a),p > 3,m > 2

(7) {a,b|a?” =1,0P" =aP" ,[a,b] = aP),p > 3,m >3

Lemma 2.4 ([10]). Qs * Qs = Dg * Dg.

Lemma 2.5 ([10, p. 51, 2.5.5]). Assume G is a nonabelian 2-group. If |G :
G'| =4, then G is of mazimal class.

Lemma 2.6 ([9]). Assume G is a metaabelian group, a,b € G and m,n are
positive integers. Then

m n
a™ b = HHw ]b (7))

i=1j=1

(ab—1>m = a™ H ia jb 1+] b=,
j<m

where i, are integers and satisfy i + j < m.

Lemma 2.7 ([2, p. 73, Lemma 4.2]). Assume G is a p-group and |G'| = p.
Then G = (Ay1xAgx- - -xA) Z(QG), where Ay, A, ..., As are minimal nonabelian
D-groups.

Lemma 2.8 ([7, p. 370, Lemma 3.2]). Assume G is a finite p-group of order
>p3, m>1andp > 2. Then all nonnormal subgroups of G are of order p™ if
and only if G = Mp(n,m), where m < n.
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Lemma 2.9 ([7]). Assume G is a finite non-Dedekind p-group. Then all non-
normal subgroups of G are of order p if and only if G is one of the following
groups:

(1) My(m,1);

(2) Mp(lv 1, 1) * CP”?

(3) Dg * Qg.

Lemma 2.10 ([15, Lemma 2.4]). Assume E is a minimal nonabelian subgroup
of a finite p-group. If [G,E] = E’, then G = E x Ce(E).

Lemma 2.11 ([15, Proposition 2.5]). Assume G is a finite p-group and |G'| =
p. If H<G and H £ Z(G), then H < G if and only if G' < H.

Lemma 2.12. Assume G is a finite non-Dedekind group. If every nonnormal
subgroup H of G satisfies |Ng(H) : H| = p1p2 - - ps, where p; is a prime and
s is a positive integer, then p1 = pa = -+ = ps = p. That is, G is a p-group.

Proof. By hypothesis we have G is nilpotent. Since G is non-Dedekind, there
exists P; € Syl,,. (G) such that P; is non-Dedekind. Assume G = P; x K. Since
P; is non-Dedekind, there exists H < P; and H ¢4 P,. Moreover, H 4 G.
Since (|H|,|K]|) = 1, No(H) = Np,(H) x K. It follows that |[Ng(H) : H| =
|Np,(H) : H||K| = p;*|K|. Since H x K 4 G, Ng(H x K) = Ng(H). It
follows that |[Ng(H x K) : H x K| = |[Np,(H) : H| = p;”i. By hypothesis
again, we have K = 1. Thus G = P;. Assume p = p;. Then G is a p-group. [

Lemma 2.13. (1) If G € Sy, then H € Sy for H < G.
(2) If G € S;, then G/N € S; for N <G, where i > 1

Proof. (1) Assume H < Gand K < H. If K 4 H, then K £ G. By hypothesis,
|INg(K) : K| = p. Since |[Ng(K) : K| < |[Ng(K) : K| and K < Ny(K),
|NH(K) : K‘ =p. So H € S;.

(2) Assume N < G and H/N 4 G/N. Then H 4 G. It follows that
INe/n(H/N) : H/N| = |[Ng(H)/N : H/N| = |[Ng(H) : H| = p'. Thus

3. Classifying S;

Lemma 3.1. A finite group G is a Dedekind group if and only if all cyclic
subgroups of G are normal.

Lemma 3.2. A subgroup N of a finite group G is fully-normal if and only if
all cyclic subgroups of N are normal in G.

Lemma 3.3. Assume G is a finite p-group. If |G| < p3, then G € S;.

Lemma 3.4. Assume G is a minimal nonabelian p-group and |G| > p*. If
G € &1, then G = M,(2,2).
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Proof. By Lemma 2.2, G = M,(n,m,1) or G = M,(n,m). If G = M,(n,m,1),
then by hypothesis we have n +m + 1 > 4. From n > m we get n > 2. Let
G = {a,b,c| a®" =" = = 1,[a,b] = ¢,]a,c] = [b,c] = 1). Obviously,
(b) 4 G. On the other hand, Ng((b)) > (a?) x (¢) x (b). Thus |Ng({(b)) :
(b)| > p™ > p? a contradiction. Assume G = M,(n,m). If n > 3, then
let G = (a,b | a?" = " = 1,[a,b] = a®" ). Obviously, () ¢ G. On
the other hand, Ng({b)) > (aP) x (b). Thus |[Ng((b)) : (b)] > p"~! > p?, a
contradiction. So n = 2. If m > 3, then let G = (a,b | a?’ =" =1, [a,b] =
aP), where (ab?" ) 41 G, o((ab?" ")) = p?. But Ne((ab?™ ")) = (a) x (b?). So
INe((ab?™ ™)) : (ab?™ 7Y > p™=! > p?, a contradiction. So m = 2. It follows
that G 2 M,(2,2). O

Theorem 3.5. Assume G is a finite p-group, p > 2 and |G| > p*. Then
G € 81 if and only if G is abelian or G = M,(2,2).

Proof. <=: If G is abelian, the conclusion is true. Assume G = Mp(2,2).
Since 1(G) = Z(G), all subgroups of order p are normal. Obviously, all
subgroups of order p® are normal. So if H € G, then |H| = p?. It follows that
H < Ng(H) < G. Thus [Ng(H) : H| = p. That is, G € ;.

=: We use induction on |G|. If |G| = p* and G € S, then we can prove G is
abelian or G = M,,(2,2). The conclusion is true. Assume the conclusion is true
for groups of order < |G|. Since G is a p-group, there exists N < G'NZ(G) and
|IN| = p. By Lemma 2.13 and |G/N| < |G|, we have, by induction hypothesis,
G/N is abelian or G/N = M,(2,2).

If G/N = M,(2,2), then |(G/N)'| = |G'N/N|=|G'/G'NN| = |G'/N| = p.
Thus |G'| = p?. By Lemma 2.3, G = (a,b | a?” = b*" = 1,[a,b] = a?). Thus
(bP) 4 G, [(bP)| = p. But Ng((bP)) = (aP,b) = M,(2,2). Thus |Ng((b?)) :
(b?)| = p?, a contradiction.

If G/N is abelian, then G is abelian or nonabelian. If G is nonabelian, then
|(G/N)'| = |G'N/N| =|G'/G'nN| =|G'/N| =1. So |G'| = p. By Lemma
27, G 2 Ay x Ay x - x A, Z(G), where A; is minimal nonabelian. Assume
G = A; = K without loss of generality. If K £ Ay, then there exists g € K\A;
such that Ng(H) > (Na, (H),g) for any H ¢ A;. Thus |[Ng(H) : H| > p?, a
contradiction. It follows that K < A;. That is, G = A;. By Lemma 3.4 we
get G = M,(2,2). O

Lemma 3.6. Assume G is a 2-group of mazimal class. Then
(i) G/Z(G) = Dan-r;
(ii) every maximal subgroup of G is cyclic or of mazimal class.

Proof. By [5, Chapter III, 11.9b Satz], G is isomorphic to one of the following:
Don,Qon or SDaon. 1t is straightforward by a simple calculation. O

Theorem 3.7. Assume G is a group of order 2". Then G € Sy if and only if
G is one of the following mutually non-isomorphism groups
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1. Dedekind 2-groups;

II. 2-groups of maximal class;

IL (a,b | ¥ * =b* =1,[a,b] = a~2);

IV. (a,b | a®" " = b =1,[a,b] = a= 272",

Proof. <=: If G is a 2-group of maximal class, we prove G € S.

Assume H 4 G. If |G : H| = 2%, then |Ng(H) : H| = 2. Assume |G : H| >
23 without loss of generality.

Assume G is a counterexample of the smallest order. Then there exists
H 4 G such that |Ng(H) : H| > 2. Since Ng(H) < G, there exists M < G
such that Ng(H) < M. By Lemma 3.6 we get M is cyclic or a 2-group of
maximal class. If M is cyclic, then H < G, a contradiction. So M is a 2-group
of maximal class. If H < M, then |[M : H| > 22 by |G : H| > 23. By Lemma 2.1
there exists i such that H = M;. Thus HcharM < G. It follows that H < G,
a contradiction. Thus H 4 M. Since G is a counterexample of the smallest
order, [Ny (H) : H| = 2. On the other hand, Nj;(H) = Ng(H)NM = Ng(H).
So [Ng(H) : H| = 2, a contradiction again. So the counterexample does not
exist.

If G is the group of type III, then G/(b?) = (@,b | a>" = v = 1,[a,b] =
@) = Dy,1. Let H 4 G. Then (b?) < H. If not, let K = (a,b?). Then
H<K. Infact, H< K <— G—HDOG-K < Vg€ G- K =
g€ G—H<+=Vge G-—K = g ¢ H. Since every element of G has the
form ba’, j = 0,1,2,3, we need to prove ba’,b~1a’ ¢ H. By calculation, we
have (ba')? = ba'ba® = b%(ab)’a’ = b2 for any i. So ba’ ¢ H. In the same
way, (b~ta")? = b~ la’bla' = b3a'b3a’ = ba'ba’ = b2. So b~la’ ¢ H. Thus
H < K = (a,b*). Moreover, (a,b?) is a fully-normal subgroup of G. In fact,
let g = a’b¥ for any g € (a,b?). Then g = (a’b¥)* = g, ¢* = (a'b¥)® =
(a®)h% = a~* = g~!. So (g) <G. By Lemma 3.2, (a,b?) is a fully-normal
subgroup of G. Tt follows that H <G, a contradiction. It follows that (b?) < H.

Since H 4 G, H 4 G. Since G is of maximal class, |[Ng(H) : H| = 2. Thus
IN¢(H) : H| = |[Ng(H) : H| = 2. That is, the group of type III is in ;.

If G is the group of type IV, considering G/(b?) and G/<a2n_3b2>7 then

—2

G/(b*) = (@b | a2 = = @, b) = a(—2+2"*3)>

T v —2 -2 on—3 —

G/ ") =@b|a =10 =a® " [a,b =a ")

Let H #1 G. We prove (b%) < H or (a®" %) < H as follows. If not, then,
letting K = (a,b?), we can prove H < K. In fact, H < K +—= G — H D
G-K—=V9eG-K=g9geG—-—H<—VgeG—-— K= g¢ H. Since
every element of G has the form b/ a’, j = 0, 1,2, 3, we need to prove ba’,b=ta’ ¢
H. By calculation, we have (ba')? = ba'ba’ = b*(ab)ia’ = b2a(~1+2" Vigi =
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b2a2" "¢ for any i. If (i,2) = 1, then (ba')? = b2a®" " if 2 | 4, then (ba')? = b2
So ba' ¢ H. In the same way, (b=ta%)? = b~ta’b~ta’ = b3a’b3a’ = ba'ba’. So
b=ta' ¢ H. Thus H < K = (a,b*). Moreover, {(a,b?) is a fully-normal subgroup
of G. In fact, let g = a’b? for any g € (a,b?). Then g* = (a ‘b2j) =g, ¢° =
(a’b¥)b = (ab)ib? = a—+2 2 1f (i,2) =1, gt = — g2 20 g2 3.
if 24, g® =a % = g~ Thus (g) <G. By Theorem 3.2, we get (a, b2> is
a fully-normal subgroup of G. Thus H < G, a contradiction. It follows that
(b%) < H or (a®" "b?) < H.

Since H 4 G, H 4 G. Since G is of maximal class, |[Nm(H) : H| = 2. Thus
INo(H) : H| = |[Ng(H) : H| = 2. That is, the group of type IV is in S.

=: Case 1: d(G) > 3.

Assume G € &1 and G is nonabelian. We prove G is a nonabelian Dedekind
2-group as follows.

Assume G is a counterexample of the smallest order. Since ®(G) # 1,
we can take N < ®(G) such that |[N| = 2 and N < G. Thus d(G/N) =
d(G) > 3. By Lemma 2.13, G/N is a nonabelian Dedekind 2-group. Since G
is a counterexample of the smallest order, by Lemma 3.1 there exists a € G
such that (a) ¢ G. So NN (a) = 1. Since Ng({a)) > (N,a) = N x (a),
|INa({a)) : ( )| = 2 by hypothesis. So Ng({a)) = N x (a). Since G/N is a
Dedekind 2-group, (N x (a))/{a) <G/N. Thus N x (a) <G.

We calculate |{(a)? | g € G}| as follows. First, we prove |{{(a)? | g € G}| =
|G : Ng({a))| > 22. Since d(G) > 3, |G/{a, ®(G))| > 22. Let G = G/Ng({(a)).
Then B(G) = (G/Na((a))) = (B(G)Na(()))/Na((a)), and B(G)Na({a)) =
D(G)(N x (@) = &(G){a) = (a,8(G)). S0 G/D(G) = G/((a, B(G))). Since
|G : ({a,®(G)))| > 22, |G/®(G)| > 22. That is, d(G) > 2. Therefore |G| > 22,
that is, |G : Ng({a))| > 22.

On the other hand, since (a) < N x (a), (a)? < (N x {(a))? = N x {(a). So
(a)? < N x (a). Since d(N x {(a)) = 2, N x {(a) has three maximal subgroups.
It follows that [{(a)? | ¢ € G}| < 2, a contradiction. So the counterexample
does not exist.

Case 2: d(G) <2

We use induction on |G]. If |G| = 2% and G € Sy, then we can prove G is a
Dedekind group, a group of order 2* of maximal class 2% or G = M3(2,2). The
conclusion is true. Assume the conclusion is true for groups of order < |G]|.
Since G is a 2-group, there exists N < G' N Z(G) and |N| = 2. Since the
condition is inheritable by quotient groups and |G/N| < |G|, G/N is one of the
groups listed in theorem by induction hypothesis.

If G/N is abelian, then, in the same way as that in the case p > 2, we have
G is abelian or G = Qg, Dg or M»(2,2).

If G/N is a 2-groups of maximal class, then |(G/N)'| = 272 by Lemma
2.1. Since (G/N)' = G'N/N =2 G'/G'N N = G'/N, |G'/N| = 2"~2. Thus
|G'| = 2771, Tt follows that |G/G’| = 4. By Lemma 2.5 we get G is a 2-group
of maximal class.
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If G/N is the group of type III. That is, G = (a, b | @2 = = 1,[a,b] =
a2). Assume N = (z). Then G = (a,b | a¥" = 2',b* = 29,[a,b] =
a2z% 22 =1,[z,a] = [x,b] = 1). Let K = (a~2z*). Tt is easy to prove G/K is
abelian. Thus G’ < K. But K < G’'. So G’ = K. That is, G’ is cyclic. Since
|G’| = 2772, it follows by [a,b]2n_2 = 1 that o(a) = 2"~! and N = (a2" ).
Thus we get the following groups:

(al) (a,b | a®" =1,0* =1,[a,b] = a~2);

(a2) {a,b | a®" " =1,b* =1,[a,b] = a 22" 7);

(a3) (a,b | a® =1, = a®" ", [a,b] = a=2);

(ad) (a,b | a®" " = 1b* =a® 7 [a,b] = a 227,

Obviously, (al) 2 the group of type III; (a2) = the group of type IV.

For (a3), let H = (a2" "b?). Then |H| = 2and H 41 G, Na(H) = (a,b%) <G.
Thus |[Ng(H) : H| > 23, a contradiction. For (a4), let a’ = ab?, b’ = b. Then

(ad) = (a3).
If G/N = the group of type IV, then, by a similar argument as that case of
above paragraph, no new groups occur. The theorem is proved. O

4. Classifying S,

Lemma 4.1. Assume G is a p-group. If G € Sy and |G : H| < p? for H < G,
then H < G. In particular, if G is nonabelian, then G = Qg or |G| > p*.

Proof. Assume |G| = p" and |G : H| = p?. If H 4 G, then H < Ng(H) < G.
Thus |[Ng(H)| = p"~ 1. Tt follows that |[Ng(H) : H| = p, a contradiction. So
H < @G. In particular, if G is nonabelian and |G| = p?, then G = Q5. O

Lemma 4.2. Assume G is a minimal nonabelian p-group and |G| > p*. Then
G € S, if and only if G = M,(3,m), where m < 3.

Proof. =>: By Lemma 2.2, G = M,(n,m,1) or G = My(n,m).

If G = My(n,m) = (a,b | a?" = 1,bP" = 1,[a,b] = a?" "), then, if n > 4,
letting H = (b), we get H ¢ G. But Ng(H) > (a?) x (b). Thus |Ng(H) :
H| > p"~! > p?, a contradiction. If n = 2, letting H = (b), we get H £ G.
But |G : H| = p?. This contradicts Lemma 4.1. If G = M,(3,m) and m > 4,
letting H = (ab?" "), we get H 4 G. But Ng(H) > (a) x (b?). Thus |[Ne(H) :
H|>p™=1 > p3 a contradiction. Thus G = M,(3,m), where m < 3.

If G 2 My(n,m,1), then, by a similar argument as that case of above
paragraph, the case does not occur.

<=: We check case by case.

If G = My(3,3), then Z(GQ) = (aP) x (b°),G" = (a), 0 (G) = (a®") x
(67", Q2(G) = (aP) x (b?). If |[H| = p°, then H < G. Thus H < G. If |H| = p*,
then |H N {(a)| # 1. If not, |H(a)| > |G|, a contradiction. It follows that
G' < H,and H<G. If |H| =p® and H ¢ G, then |[H N Z(G)| < p?, and

Ng(H) > (H, Z(G)). Thus |Ng(H)| > HHLZGL > 22" = 55 1t follows that
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INg(H)| = p°, and |[Ng(H) : H| = p?. If |[H| = p?, then H < Q5(G) < Z(G).

Thus H <G. If |H| = p, then H < Q;(G) < Z(G). Thus H <G. So G € Ss.
If G = Mpy(3,2) or G = My(3,1), then G € S; by a similar argument as that

case of above paragraph. ([l

Lemma 4.3. Assume G is a non-Dedekind p-group and |G| > p*, K is a
minimal nonabelian p-group. If G = K x C,, then G ¢ Ss.

Proof. By Lemma 2.2, K = M,(n,m) or M,(n,m,1). If K = M,(n,m,1),
then G = K x N, where N = (), and G/N = M,(n,m,1). By Lemma 2.1

and Lemma 4.2, G ¢ Sy. If K = Mp(n,m), then G = (a,b,c | a?" =1, =
1, =1,[a,b] = a?" ', [a,d] = [b,c] = 1). If n > 3, then, by letting H = (b),
we get H 4 G. But Ng(H) = (aP) x (b) x {¢). Thus [Ng(H) : H| > p™ > p?,
a contradiction. If n =2, let H = (b,c¢). Then H 4 G. But |G : H| = p*. This
contradicts Lemma 4.1. So G ¢ Ss. O

Theorem 4.4. Assume G is a finite p-groups. Then G € Sy if and only if G
is one of the following mutually non-isomorphic groups

(1) M,(3,m), where m < 3;

(2) Mp(1,1,1) % Cpe;

(3) (a,bye | a? =W = = 1[a,b] = 1,[a,c] = b7, [b,c] = a?b"?), if

p>2, k+471h? is a fived quadratic non-residue (mod p), where k = 1
or v, v is a fized quadratic non-residue (mod p), h =0,1,..., %. If
p=2,thenk=1h=1;

(4) Qs x Cy;

(5) (a,b,c | a* =bt=1,c% =, [a,b] = 1,[a,c] = V%, [b,c] = a?);
(6) (a,b,c|a*=0b*=c'=1,[a,b] =2, [a,c] = b*c2, [b,c] = a?b?,[c?,a] =
[027 bl = 1);

(7) Dedekind groups.
Proof. =>: We use induction on |G|. If |G| = p* and G € Sy, then we can
prove G is a Dedekind group, or G = M,(3,1) or G = My(1,1,1) * Cp2. The
conclusion is true. Assume the conclusion is true for groups of order < |G]|.
Since G is a p-group, there exists N < G' N Z(G) and |N| = p. Since the
condition is inheritable by quotient groups and |G/N| < |G|, G/N is the group
listed in Theorem by induction hypothesis. .

Case 1: If G/N = M,(3,m) = (a,b | @’ =10 =1, [@,b] = 6172), then,
by |(G/N)| = |G'N/N| = |G'/G'\N| = |G'/N| = p, we have |G'| = p*. By
Lemma 2.3, G = (a,b | a?" = 1,bP" = 1,[a,b] = a?’), where m = 2,3. Let
H = (°). Then H 4 G. But Ng(H) > (a?",b). So |Na(H) : H| > p?, a
contradiction.

Case 2: If G/N = M,(1,1,1) * Cpo = (a,b,¢) = (@ = 1, = 1,&? =
1,[b,¢] = @, [a,b] = 1,[a,¢] = 1). Let N = (z). Then G = (a,b,c | a?’ =
2 0P =29 P = 2F [a,b] = 2!, [a, ] = 2™, [b,c] = aPz", 2P = 1,[z,a] = [x,b] =
[x,c] = 1).
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It is easy to prove the following facts:

L o(a) = p*;

2. @ =CpxCpand ¢(GQ) =2;

3. 01(G) < Z2(G);

4. j,k are not zero in the same time.

We discuss in two cases: (i) b? # 1 and ¢? =1, (ii) b? # 1 and P # 1.

(i) b # 1 and ¢? = 1.

Then G = (a,b,c | a?’ = 1,b° = aJ P = 1,[a,b] = 2!, [a,c] = 2™, [b,c] =
aPz™ 2P = 1,[x,a] = [2,b] = [x,c] = 1). Let H = {(a,c¢). If [a,c¢] = 1, then
H 4 G, and |G : H| = p?. This contradicts Lemma 4.1. Thus m % 0 (mod p).

(ia) p > 2.

If [a,b] # 1, then, by letting by = bct satisfying [+mt = 0 (mod p), it reduces
to the case [a,b] = 1. Assume G = (a,b,c | a?’ = 1L, =z, = 1,[a,b] =
1,[a,c] = 2™, [b,c] = aPz™, 2P = 1,[z,a] = [2,b] = [z,d = 1) = (a,b,c | a? =
1L, =1, =1,[a,b] = 1, [a,c] = b™P, b, c] = aPb"P).

If m = s (mod p), then, replacing a by a® ', and ¢ by ¢* ', and letting
h = ns™1, we have G = (a,b,c | a?’ = 1,b1”2 =1, = 1,[a,b] = 1,[a,c] =
b2, [b,c] = aPb"P). Replacing a by a~!, and ¢ by ¢!, we have h < pgl. Let
H = (ab’,c). If hi +1 = 4% (mod p), in other words, 1 + h; is a quadratic
residue (mod p), then H = M,(2,1), and |H| = p3. Obviously, H 4 G. But
|G : H| = p*. This contradicts Lemma 4.1. So 1 + %2 is a quadratic non-
residue (mod p).

If m = vs® (mod p), where v # 0, then, replacing a by a® , ¢ by ¢ and
letting h = ns™!, G = (a,b,c | a?’ = l,bp2 = 1,» = 1,[a,b] = 1,[a,c] =
b*P [b,c] = aPb"P). Again replacing a by a~! and ¢ by ¢!, we have h < p2;1.
Let H = (ab?,c). If hi + v =i? (mod p), in other words, v + %2 is a quadratic
residue (mod p), then H = M,(2,1), and |H| = p3. Obviously, H ¢ G, But
|G : H| = p*. This contradicts Lemma 4.1. So v + %2 is a quadratic non-
residue (mod p).

So, if p> 2 and G/N = M,(1,1,1) * Cp2, then G is the group of type (3).

(ib) p = 2.

Assume G = (a,b,c | a* = 1,b%> = z,¢® = 1, b, c| = a2, [a,b] = 2!, [a,c] =
x,22 = 1,[x,a] = [x,b] = [x,¢] = 1). If | = n, then, by letting H = (ab, c), we
have H # G. But |G : H| = p?. This contradicts Lemma 4.1. So [ # n. Thus
we get two groups:

Gy = (a,b,c | at =1, =2, =1,[b,c] = ad? [a,b] = z,[a,¢] = x,2® =1,
[z,a] = [2,0] = [z,c] = 1)

a,b,cla =1,0* =1,¢% = 1,[b, ] = a?, [a,b] = b%, [a, ] = b?),

= (
Gaa) = (a1, bi,crlar* = 1,b1* = 21,017 = 1, [br, e1] = a1y, [ar, by] = 1,

[a1,c1] = z1,21% = 1, [z1,01] = [21,01] = [21,04] = 1)
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= <a17b1,cl|a14 = 1,b14 = 1,612 = 1, [bl,cl] = a12b12, [al,bl] = 1,
[al, Cl} = b12>.
Let 0 : a; — a, by — abc, ¢c; — c¢. Then G(11) = G(12) = the group of
type (3).

(ii) O* # 1 and P # 1.

If p > 2, then, by letting ¢; = ¢b® satisfying jt +k = 0 (mod p), it reduces
to the case (ia).

If p = 2, assume G = (a,b,c | a* = 1,b®> = z,c® = z,[b,c] = a®x",[a,b] =
2 [a,c] = 2™ 2% = 1,[z,a] = [z,b] = [z,¢] = 1). Since G’ = Cy x Cq, I, m are
not zero in the same time.

(ii-1) m=0,1=1.

If n = 0, then G = (a,b,c | a* = 1,0* = 1,2 = V2, [b,c] = a? [a,b] =
b2, la,c] = 1). Let a; = a,by = ¢,c; = b. Then G = the group of type (5). If
n =1, then G = (a,b,c | a* = 1,b* = 1,c®> = b2, [b, | = a?b?, [a,b] = b2, [a,c] =
1). Let a; = a,b; = b,c; = abc. Then G = G411y = the group of type (3).

(ii-2) m = 1,1 = 0.

Then G = (a,b,c | a* = 1,b%> = x,¢* = x,[b,c] = a’2™,[a,b] = 1,[a,c] =
x, 22 =1,[x,a] = [z,b] = [x,c] = 1). Let a; = a,b; = ¢,c; = b. Then it reduces
to the case (ii — 1).

(ii-3): m=1,1=1.

Then G = (a,b,c | a* = 1,b* = z,¢* = 2,[b,c] = a®z",[a,b] = z,[a,c] =
r,22 = 1,[z,a] = [x,b] = [v,¢] = 1). Let a; = a,b; = b,c; = abc. Then it
reduces to the case (i) or (ii — 1).

2

Case 3: If G/N = (@b |a” = 1,00 =1, = 1,[a,b] = 1,[a,d =
ka, [b,¢] = Epghp>. Assume N = (x), then G = (a,b, ¢ | a?’ = xt, W = ), P =
2 [a,b] = 2!, [a,c] = b*Pa™ [b,¢] = aPbPz" 2P = 1,[r,a] = [z,b] = [v,c] =
1).

First, we prove the following facts:

1. o(a) = p? and o(b) = p?;

2. G'=C3 and ¢(G) = 2;

3. P # 1.

In fact, since ¢(G/N) =2, (G/N)3s = GsN/N = 1. Thus G3 < N < Z(G).
That is, G4 = 1. Since G” < Gy, G’ is abelian. Since |(G/N)'| = p?, |G'| = p3.
It follows by ¢? € Z(G) that [a,cP] =1, [b,cP] = 1.

By the formula of Lemma 2.6, we have

[bk;D’C] _ [b, C]kp[b’ c, b](kzp) — (apbhpxn)kp[apbhpxn,b]
= aFP’[aP | b= MP)phRPY 2B b
— kP’ phkp® [a?, b]bhp — kP’ plkp’
It follows that

1) 1=[ac) =[a d"la,c,d) = [a, P, ) = br" (0" phe") (5).
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1=[b,c = [b,d"[b, ¢, 2 = (aPbPamyPlarphogn, o (5)
_ ap2bhp2([ap, C]bhp [bhp, C])(g) _ aprhp2 (bkp2ahp2bh2p2)(g)'

If p > 2, then it follows from (1) and (2) that [a,c?] = b*P° = 1, [b,cP] =
a?’b"?’ = 1. Thus o(a) = p?, o(b) = p°.

If p=2, then h = k = 1. Tt follows from (1) and (2) that [a,c?] = a* = 1,
[b,c?] = b* = 1. Thus o(a) = 4, o(b) = 4.

Since G = G’ = (aP,b7), G' = (aP, b, z) = C,°. Sol # 0. Since G’ < Z(G),
¢(G) = 2. Moreover, assume c? # 1. If not7 let H = (¢). Then H ¢ G. But
Ng(H) > {(aP,bP,c,x). So [Ng(H) : H| > p3, a contradiction.

If p > 2, assume G = (a,b,c | a? = 1,0P" = 1,¢? = z,[a,b] = 2!, [a,c] =
beP ™ [b, ¢] = aPb"Pa™ xP = 1,[z,a] = [x,b] = [x,c] = 1). Obviously, |G| = pS.
Since ¢(G) = 2, G is p-abelian. It follows that Q4 (G) = (a?) x (bP) x (x) < Z(G).
We will prove G does not satisfy the condition of theorem.

Assume H < G. If |H| = p3, then H is abelian. In fact, if exp(H) = p,
then H = Q;(G). Thus H is abelian. If exp(H) = p? and H is not abelian,
then H = M,(2,1). This contradicts Q1(G) < Z(G). If |H| = p°, then
H<G. If |H| = p* and H <G, then G is meta-Hamilton p-group. But by the
classification of meta-Hamilton p-group [1], we know G is not a meta-Hamilton
p-group. Thus there exists a nonnormal subgroup H of order p*. It follows
that |G : H| = p?. But this contradicts Lemma 4.1. So G does not satisfy the
condition of theorem.

If p =2, assume G = {(a,b,c | a* = 1,b* = 1,¢? = 2,[a,b] = x,[a,c] =
b ax™, [b,c] = a®b?2™, 2% = 1,[r,a] = [z,b] = [x,c] = 1), where m,n = 0,1. If
m = n, then, by letting H = (ac,b) = M(2,2), we have |H| = 2*. Obviously,
H 4 G. But |G : H| = 22. This contradicts Lemma 4.1. If m = 0,n = 1,
then, by letting H = (ab, bc) = M5(2,2), we have |H| = 2*. Obviously, H 4 G.
But |G : H| = p? This contradicts Lemma 4.1 again. If m = 1,n = 0,
Then G = (a,b,c | a* = 1,b* = 1,¢* = 1,[a,b] = 2, [a,c] = b*c2,[b,c] =

a?b?,[c?,a] = [c?,b] = 1) = the group of type (6)

Case 4: If G/N = (a,b,¢c | a* = 1, b= a? ¢t = 1,[a,b] = a@% [a,¢] =
1, [5 ¢] =1). Assume N = (z). Then G (a bye|at =28 b? = a%a29 ¢t =
2* [a,b] = a®2!,[a,c] = 2™, [b,c] = 2", 2% = 1,[x,a] = [z,b] = [z,c] = 1).

It is easy to prove the following facts:

1. o(a) = 4;

2. G' =2 (Cy x Cy and m,n are not 0 in the same time.

If k =0, then G = {(a,b,c | a* = 1,b®> = a®a7,c* = 1,[a,b] = a®2,[a,c] =
™ [b,c] = 2" 2% = 1,[x,a] = [2,b] = [z,¢] = 1). Let H = (a"b™, c) = C4><C4.
Then |H| = 2*. Obviously, H 4 G. But |G : H| = p?. This contradicts Lemma
4.1.

If k =1, then G = (a,b,c | a* = 1,b% = a%27,c* = x,[a,b] = a2, [a, ] =
™, [b,c] = 2" 2% = 1,[x,a] = [z,b] = [z,¢] = 1). Let H = (a™b™) = C4. Then
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|H| = 22. Obviously, H ¢ G. But Ng(H) > (a"b™,c) = Cy x Cg. It follows
that Ng(H) = Cy x Cs. Thus |[Ng(H) : H| = 23, a contradiction.

Case 5: If G/N = (@,b,e|a* =b =1, =b,[a,b =1,[a,d = b, [b.¢d =
@?). Assume N = (z). Then G = (a,b,c | a* = 2%, b* = 27, = b%2" [a,b] =
™ [a,c] = b2a", [b,c] = a?a!, 2 = 1,[x,a] = [z,b] = [x,c] = 1).

It is easy to prove the following facts.

1. o(a) =4 and o(b) = 4;

2. G'~2C3 and m = 1;

3. ¢(G) =2;

4. Q1 (G) = (a®, 0%, %) < Z(G).

By the above facts we can assume G = (a,b,c | a* = 1,b* = 1,c% = b?z¥,
[a,b] = x,]a,c] = b2a",[b,c] = a®2!,2? = 1,[z,a] = [z,b] = [z,c] = 1). By
discussing the possible values for k,n, I, we know there exists H = Ms(2,2),
and H 4 G. But |G : H| = 22, This contradicts Lemma 4.1.

Case 6: If G/N = (@,b,c |al =5 =c* =1,[b,d = a2, [a,b] = &, [a,d =
b é2 [¢%, a] =1,[¢*,b] = 1). Assume N = (z). Then G = {(a,b,c | a* = 2%, b* =

2, c4 = z*. b, c] = a?b%2! [a,b] = 2™, [a, ] = b2ca",[c?a] = x°,[c2,b] =
:ct,xzzl,[ ,al = [z,b] = [x,c]-l).

It is easy to prove the following facts:

1. o(a) = 4;

2. o(b) = o(c) = 4;

3. G' = {(a®) x (b?) x (¢?) x (z) =2 C3.

By above facts we can assume G = (a,b,c | a* =
a’b?x!,[a,b] = 2™, la,c] = b*ca™,[c?,a] = x°,[c2,b] = 2t 2% = 1,[x,a] =
[,0] = [z,c] = 1). If s=t=0, then letting H = (a), we have H 4 G. But
Ng(H) > {(a,b?, % x). Tt follows that |[Ng(H) : H| > 23, a contradiction. If s
and ¢ are not zero in the same time, then, by letting H = <c2>, we have H 4 G.
But Ng(H) > (a?,b%, ¢, z). It follows that |[Ng(H) : H| > 23, a contradiction.

Case 7: If G/N is abelian and G is not abelian, then |G’| = p. By Lemma
27, G =2 Ay % Ag x -+ x A, Z(G). Moreover, assume G = Ay x KZ(G). If
K # 1, assume H 4 Ay, then H 4 G. |Na,(H) : H| > p. We observed
K < Na(H), KN A, < Z(K) and Ng(H) > Na, (H) * K. Thus [Ne(H ) :

Na,(H)||K Na, (H)||K Na, (H)||K
H| 2 [Nay(H)E/H| = il > Wbl > Bl >
contradiction. Thus K = 1. It follows that G = 41 Z(G).

If Z(G) < Aq, then G = A;. Thus G = the group of type (1) by Lemma
4.2.

If Z(G) £ Ay, then there exists g € Z(G)\Ay and g € Ng(H). If H ¢ A,
and |Na, (H) : H| > p?, then |Ng(H) : H\ > p3. Thus G ¢ Ss. It follows that
N4, (H) : H\ p. By Lemma 3.4, A1 22 M,,(2,1), My(1,1,1) or M,(2,2).

If Ay = Mp,(2,1) or M,(1,1,1), then |Z( )| > p? since |Z(A1)] = p. On
the other hand, there exists H 4 A; and H < A;. Thus p*> = |[Ng(H) : H| >

N || Z(G ~
R LI > 1 Z(G)|. 1t follows that |Z(G)| = p?. 1f Z(G) = C, x Cp,

1,b% =1, 4:1,[b,c]:

a
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then G = M,(2,1) x C, or G = M,(1,1,1) x C,. By Lemma 4.3, G ¢ Sy. If
Z(G) = C,2, then G = the group of type (2).

If A7 = M,(2,2), then |Z(G)| = p* by a similar argument as above para-
graph. Since Z(A;) = C, x Cp, < Z(G), Z(G) = Cp x Cp, x Cp or Z(G) =
sz X Cp.

If Z(G) = Cp, x Cp x Cp, then G = Mp(2,2) x Cp,. By Lemma 4.2, G ¢ S».

If Z(G) = Cp2 x Cp, then G = Mp(2,2) * Cp2 = (a,b,c) = (@@ =1, =
1,0 = 1,[a,b] = a?,[a,c] = [b,c] = 1,¢? = a™”"). If j Z 0 (mod D), then,
by letting b = a'¥’,a1 = a’, we have G = {(a1,b1,c) = <a1 = 1,07 =
1, =1,]a1,b] = a1?, [a1,¢] = [b1,¢] = 1,¢P = b?). Let H = (by,c). Then
H 4 G. But |G : H| = p?. This contradicts Lemma 4.1. If j = 0 (mod p),
then, letting H = (ca™"). Obviously, H 4 G. But Ng(H) = {(a,c,b?). Thus
|INg(H) : H| = p3, a contradiction. That means G ¢ Ss.

If G/N = Qs x Cy, then [G'| = 22. Assume N = (z). Then G =
(a,b,c,x | a* = 2%, b? = a?27, ® = ¥, [a,b] = a®2!, [a,c] = 2™, [b,c] = 2™, 2% =
1, [z, a] [x,b] = [!L‘ c]=1).

Since a”?b? € Z(G), [a=2b*,b] = 1. we get by calculation [a=2b2,b] =
[a=2,b)"" = ([a,b]—Q)b2 = a* = 1. Thus o(a) = 4. Since G = (a2), G’ =
(a?,z) = (a?) x (x). Moreover, m,n are not zero in the same time. Since
G’ < Z(Q), (G) = 2. So we can assume G = (a,b,c,z | a* = 1,0? = a%a29,c? =

k la, b = a®a!,[a,c] = 2™, [b,c] = 2™, 2% = 1, [x,a] = [2,b] = [z,c] = 1).

If k =0, then there exists H = Cy x C5. It is easy to see that H ﬂ G. But
|G : H| = p?. This contradicts Lemma 4.1. If k = 1, then G = the group of
type (5) by discussing the possible values for j,1, m,n.

<=: Case 1: If G = the group of type (1), then the conclusion is true by
Lemma 4.2.

Case 2: If G = the group of type (2), that is, G = (a,b, ¢ | a?’ =P =P =
1, [b, ¢l =a,[a,b] = [a,c] = 1) = Mp,(1,1,1) % Cp2, then Z(G) = (a),G' = (a?).
If |H| = p3, then H<G. Thus H<G. If |H| = p?, then |[HN{a)| # 1. Tt follows
that G’ < H,so H<G. If |H| = p and H 4 G, then Ng(H) > (H, Z(G)).
Thus |Ng(H)| > p3. Tt follows that |Ng(H)| = p*. So |[Ng(H) : H| = p>.
That means G € S.

Case 3: If G = the group of type (3), where p > 2, then G = (a,b, ¢ | a?’ =
b o=cP =1,la,b] =1,[a,d = b, [b, ] = aPb"?), k+471h? is a fixed quadratic
non-residue (mod p), where k = 1 or v, v is a fixed quadratic non-residue (mod
p), h=0,1,..., 255 then G’ = (aPb"?,bFP), Z(G) = ®(G) = (a?) x (b*),G3 =
1,¢(G) = 2, and G is p-abelian.

It is easy to prove that all quotient groups of order p* of G are isomorphic
to My(1,1,1) % Cpe

For any H 4 G, we prove |[Ng(H) : H| = p? as follows. So G € S,.

If |H| = p?, then [HNG'| < p. If HNG' = 1, since Ng(H) > (H,G')
and |G| = |(H,G")|, H < G. This is a contradiction. If |[H NG| = p, let
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G = G/HNG'. Since |G| = p*, G = M,y(1,1,1) x Cp2. Since |H| = p?, by
using the result of Case 2, we have |H < G. Thus H < G, a contradiction.

If |[H| = p?, then [HNG'| < p. If [HNG'| = 1, then Ng(H) > (H,G").
Since H 4 G, |Ng(H)| = p*. Thus |[Ng(H) : H| = p*>. If |[HNG'| = p,
let G = G/HNG'. Since |G| = p*, G = M,(1,1,1) % Cpo. If H 4 G, then
H 4 G. By using the result of Case 2, we have [Ng(H) : H| = p?. Thus
ING(H) : H| = [Ng(H) : 7| = 7.

If |H| = p, since Q1 (G) = (aP) x (b?) x (¢), assume H = (a®PbiPck'). If k' =
0 (mod p), then H <G, a contradiction. Thus &’ # 0 (mod p),0 <i,5 <p—1.
(a®PbIPck )a b’ e = gippip K o=k tpy—hK tp—kk'sp c (4ippirck’)  We get

—k't=0 (mod p)
—hk't —kk's =0 (mod p).

It follows by k # 0 (mod p) that

t
L

Thus Ng(H) = {a®blc® | t =0 (mod p),s =0 (mod p)}. So |[Ng(H)| = p3
and |[Ng(H) : H| = p*.

If p=2,then G = (a,b,c|a* = 1,b* = 1,c¢® = 1,[a,b] = 1,[a,c] = %, [b,c| =
a’b?). G' = (a?) x (b*) = Z(G).

It is easy to prove that all quotient groups of order 2% of G are isomorphic
to Qg * C4.

For any H 9 G, we prove |[Ng(H) : H| = 22 as follows. So G € S,.

If |[H| =23, then |[HNG'| <2. If |[HNG'| =1, then H <G by Ng(H) >
HG' = G, a contradiction. If |[HNG'| =2, let G = G/HNG'. Since |G| = 24,
G = Qg * Cy. Since |H| = 22, in the same way as that of Case 2, we have
H < G. Thus H < G, a contradiction.

If |H| = 22, then |[HNG'| < 2. If [HNG'| = 1, then [Ng(H)| > |HG'| = 2*.
That means |Ng(H)| = 2*. Thus |[Ng(H) : H| = 22. If [HNG'| = 2, let
G=G/HNG' Since |G| =2*, G = Qs+Cy. But |[H| =2, and H 4 G. In the
same way as that of Case 2, we have [Ng(H) : H| = 22. Thus |[Ng(H) : H| =
|INg(H) : H| = 2%

If |H| = 2, then we determine H and Ng(H) as follows.

For any g € G, we have g = a’b/c¥. If o(g) = 2, then

(mod p)
(mod p).

0
0

)

(aibjck)2 = (aibj)2[aibj, c"“}cyc
= g% [ai, b_j]ij [ai7 c_k][bj7 c_k]c%
— Q212 =20k g —2ik p— 2k 2k

— 2(i—ik) 20 —ik—jk) 2k _ 1
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It follows that

i—jk=0 (mod 2)
j—tk—jk=0 (mod 2).
Moreover,
1=0 (mod 2)
j=0 (mod 2).

So we can assume H = (a?b%ck). If k = 0 (mod 2), then H < G, a
contradiction. Thus k #Z 0 (mod 2),4,5 =0, 1.

Assume a®b'c* € Ng(H). Then (a?b%ck)e = a?b?I(cFb—2ks)
a2ib2jcka—2tkb—2tkb—2ks — a2ib2jcka—2tkb—2tk—2ks c <a2ib2jck>. It follows that
tk=0 (mod 2)

ks=0 (mod 2).

t u
sbtcu b'e .

Moreover,

=0 (mod 2)
{ =0 (mod 2).
It follows that Ng(H) = {a*b'c* | t = 0 (mod 2), s = 0 (mod 2)}. Thus
INg(H)| =23, and |[Ng(H) : H| = 2.

Case 4: If G = the group of type (4), that is, G = {(a,b,c | a* = 1,b* =
a?, ¢t =1,[a,b] = a2, [a,c] = [b,c] = 1), then G’ = (a?), Z(G) = (a?) x (c).

For any H 4 G, we prove |[Ng(H) : H| = 2% as follows. That means G € Ss.

If |H| = 23, then |H N {a)| # 1. If not, since |H N (a,b)| > 2, H N {a,b)
must contain an element of order 2. But (a,b) = Qg has unique element a>
of order 2, so a® € H, a contradiction. Thus H > G’, that means H < G, a
contradiction. If |H| = 22, then |H N Z(G)| < 2. But [Ng(H)| > |HZ(G)| =
W2l > 21, so [NG(H)| = 2% Thus |[Ng(H) : H| = 22. Tf |H| = 2, since
01 (G) = (a®) x (c?) < Z(@Q), H <G, a contradiction.

Case 5: If G = the group of type (5), i.e., G = (a b, c | =1,
b2 [a,b] = 1,[a,c] = b2, [b,c] = a?), then G’ = (a?) x (b*) = Z(G)
and so HNG' # 1 for any H < G.

It is easy to prove that all quotient groups of order p* of G are isomorphic
to Qg x Cy or Qg x Cs.

For any H 4 G, we prove |[Ng(H) : H| = 22 as follows, That means G € Ss.

If |[H| = 23, then |[HNG'| = 2. Let G = G/HNG'. Since |G| = 24,
G = QgxCyor Qg x Co. If G = Qg * Cy, since |[H| =22, H <G by the same
argument as that of Case 2. So H < G, a contradiction. If G = Qg x Cs, then
H < G. That means H < G, a contradiction.

If |[H| = 22, then |[HNG'| = 2. Let G = G/HNG'. Since |G| = 24,
G = Q8*04OI'Q8X02 If G = Qg *Cy, since |H| =2, |[Ng(H) : H| = 2? by
the same argument as that of Case 2. Thus |Ng(H) : H| = |N§(H) H| =22
If G = Qg x Co, then H<G. So H < G, a contradiction.

If |H| = 2, since Q1(GQ) = (a®) x (b?) < Z(G), H <4 G, a contradiction.

2

=1,c
= M (G),
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Case 6: IfG = the group of (6), i.e., G = (a,b,c | a* = 1,b* = 1,¢* =
1,[a b = % [a,c] = b33, [b, c] = a®V?, [c a) = [¢?,b] = 1), then G’ = (a?) x
(b?) x {c ):Z(G):Ql(G), andsoHﬁG’;élforanyHgG.

It is easy to prove that all quotient groups of order p® of G are isomorphic
to the group of type (3).

For any H 4 G, we prove |[Ng(H) : H| = 22 as follows, That means G € Ss.

If |[H =2% then |[HNG'| <22 If |HNG'| =2, let G = G/HNG'. Since
|G| = 2°, G = the group of type (3), Since |[H| = 23, H < G by the same
argument as that of Case 3, a contradiction. If |[H N G’| = 22, then there
exists N < HNG' and |N| = 2 such that G/HNG' = G/N/HNG'/N. Since
G/N 2 the group of type (3), G/H NG’ = the group of type (2) by the same
argument as that of Case 3, Since |H| = 22, H <G by the same argument as
that of Case 2. So H < @G, a contradiction.

If |H| = 2%, then |[HNG/| < 22. I |[HNG'| = 2, let G = G/HNG".
Since |G| = 25, G = the group of type (3). Since |[H| = 2% and H ¢ G,
|INg(H) : H| = 2% by the same argument as that of Case 3. Thus |[Ng(H) :
H| = |Ng(H) : H| = 22. If |[H N G’| = 22, then there exists N < H NG’ and
|N| = 2, such that G/HNG' 2 G/N/HNG'/N. Since G/N = the group of
type (3), G/H NG’ = the group of type (2) by the same argument as that of
Case 3. Let G = G/H NG and |H| = 2. Since H 4 G, |Ng(H) : H| = 2* by
the result of Case 2. Thus |[Ng(H) : H| = |[Ng(H) : H| = 22.

If |H| = 22, then |HNG'| = 2. Let G = G/HNG'. Since |G| = 2°, G = the
group of type (3). Since [H| =2 and H ¢4 G, |[Ng(H) : H| = 2% by the result
of Case 3. Thus |[Ng(H) : H| = [Ng(H) : H| = 22.

If |H| = 2, since Q1(GQ) = (a?) x (b?) x (c?) < Z(G), H <G, a contradiction.

The groups listed in theorem are mutually non-isomorphic, the details are
omitted. O

5. Classifying S3

Theorem 5.1. If G is a non-Dedekind p-group, then G € Ss if and only if G

is one of the following mutually non-isomorphic groups

(1) M,(i+1,m), where m < i+ 1;

(2) Mp(1,1,1) % Cpi;

(3) D+ Qs, (i = 3);

(4) (a,b,e,d | a* = b =t =d* = 1,a® = d*,b® = 2,[d,b] = a?, [b,a] =
a?,lc,a] = b2,[d,a] = [e,b] = a?b?,[c,d] = 1), (i= 3).

Proof. =: Case 1. |G'| =p

Let N3 be a non-normal subgroup of G with minimal order, then all of
maximal subgroups of N7 are normal in G, and N; is nonnormal in G. Then
N7 cannot be generated by its maximal subgroups, the maximal subgroup of
N; is unique, thus Nj is cyclic. Let Ny = (b). Since N; is non-normal in G,
there exists a € G such that [a,b] # 1. Because |G'| = p, we have (a,b) is
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a minimal nonabelian subgroup of G. Let H = (a,b). By Lemma 2.10, we
obtain G = H xCg(H). Since H is minimal nonabelian, we have Cy (N7) < H.
And Og(Nl) > CG(H), Cg(Nl) > CH(Nl), thus Cg(Nl) = NG(Nl) <(@. By
G € S3, we can get Nj is a nonnormal subgroup of G with maximal order, it
follows that all nonnormal subgroups of G are of same order.

If all nonnormal subgroups of G are of order p, by Lemma 2.9, G is one of
following groups:

(1) Mp(i + 17 1);

(2) Mp(1,1,1) % Cpi;

(3) Ds * Qs (i=3).

If all of nonnormal subgroups of G are of order p™, where m > 2, then
0 (G) < Z(G). When p > 2, by Lemma 2.8, we get G = M, (i + 1,m), where
m < i+ 1. When p =2, since G = H*Cg(H), G € S3, so is H, we can get
H = M(i + 1,m), where m < i+ 1. Assume that C(H) £ H, then there
exists ¢ € Cg(H)\H. Let H = (a) x (b) and 2" = a2’ b, n,s,t > 1. We get a
contradiction, thus Cq(H) < H, G =2 M3(i+ 1, m), where m < ¢+ 1.

If s > 2, we have ¢; = 2" a2 02" ¢ H with order p, then (b,¢;) £ G
and |(b, c1)| # |(b)], which is contrary to that all of nonnormal subgroups of G
are of same order.

If s =1 and ¢t > 2, we have ¢; = 2" ab? ¢ H with order p, then
(c1) 4 G and |{c1)| # |(b)|, which is contrary to that all nonnormal subgroups
of G are of same order. ‘ »

Ifs=1andt=1 let K = (Hc)=(a®" =" =1,[a,b] = a?,*" =
a’b? [c,a] = [c,b] = 1), where m < i+ 1. If i +1 > 3, we have ¢; =
2 aba? ¢ H with ¢; = ¢2" 'aba® ¢ H with order p, then (¢;) ¢4 G
and |{c1)| # |{b)|, which is contrary to that all nonnormal subgroups of G are
of order |Ny|. If i +1 =m = 2, since G € S3 and (b) 4 G, we have n > 2 thus
(ca) 4 G, and |(ca)| # |(b)|, which is contrary to that all nonnormal subgroups
of G are of same order.

Case 2. |G| > p2.

We use induction on |G|. If |G] = p° and G € Ss, then all nonnormal
subgroups of G are of order p, by Lemma 2.9, we can get G = M,(4,1),
M, (1,1,1) x Cps or Dg x Qg. The conclusion is true. Assume the conclusion is
true for groups of order < |G|. Since G is a p-group, there exists N < G'NZ(G)
and |N| = p. By Lemma 2.13 and |G/N| < |G|, G/N is the group of listed in
Theorem by induction hypothesis. N

If G/N = My(i+1,m) = (@,b|a* =18 =1,[ab =a"), then it
follows by |(G/N)'| = |G'N/N| = |G'/G' " N| = |G'/N| = p that |G'| = p.
By Lemma 2.3, G = (a,b|ap7’+2 =1,0"" = 1,[a,b] = a?"), where m > 2. Let
H = (b?). Obviously, H 4 G. But Ng(H) > (a?,b). Thus |[Ng(H) : H| >
P2, a contradiction.
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If G/N = My(1,1,1) % Cpi = (@,b,¢) = (@ = 1,6 = 1,&* = 1,[b,d =

@' [a, 5] = 1,[a@, ¢ = 1), then, letting N = (2), G = (a,b,c | a?' = z°,bP =
2P = 2F [a,b] = 2l [a,c] = a™,[b,d = a?' z", 2P = 1,[x,a] = [x,b] =
[z, c] =1). Smce |(G/N) | =|G'N/N|=|G'/G'NN| = \G'/N| =p, |G'| = p*.
Thus G is metaabelian. Since ¥ € Z(G), 1 = [bP,c] = [b,J?[b, ¢, b]() =

(api_lx”)p[api_lx”,b](g) =a? [a’f '

,b](g) = a?'. Thus o(a) = p'. Since G =
G = (@), G = (a "z) = C, x Cp. Moreover, I,m are not zero in the
same time. Assume G = (a,b,c | a? = 1,bP = 27, ¢? = 2% [a,b] = 2!, [a,c] =
™, b,c] = a? 2", 2P = 1,[z,a] = [x,b] = [z,c] = 1). Let H = (a). Since
l,m are not zero in the same time, H 4 G. But |[Ng(H)| < p"™2. Thus

|INg(H) : H| < p* # p', a contradiction.
2

If G/N % Dg x Qs = {(a,b,c,d | a* = 15 =1 =12 =d.,a® =
¢ [a,b] = @ [e,d] = ¢ [a,¢] = [a,d] = [b,¢] = [b,d] = 1), then, letting
Nz(ac,G <abcd\a4—x bz—mj,c‘l:ac ,62:d2xl,a2262 ,[a,b] =
a’x™,[c,d] = 2%, [a,c] = 2%, [a,d] = 2%, [b,c] = 2V, [b,d] = ¥, 2% = 1,[2,a] =
[2,0] = [z,c] = [z,d] = 1). Slnce d=%2c? € Z(G), [d72c*,d] = 1. On the other
hand, [d~2c¢2,d] = [2,d] = [c,d)*[c,d,c] = ¢*. So ¢* = 1. Since a® = 2™,
at = Assume G = {(a,b, c d | a* = 1,0% = 27, c* = 1,¢% = d?2!,a? =
Aax™, [a,b] = a®z",[c,d] = 2a®,[a,c] = = z¥

1l

2, 2?2 = 1,[z,a] = [2,b] = [x, }z[x,d}zl). y G = {(a?), G' = (a®,z)
Cy x C3. Moreover, G’ < Z(G) and exp(G) = 4. By the argument of [15
Lemma 4.5], G = (a,b,c

a’b? la,c] = [b,d] = 1,]
group of type (4).
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If G/N = the group of type (4), then, letting N = (x), G = (a,b,c,d | a* =
bt = 2t = 2k dt = 2l a? = d*a™ b = can,d, b] = a?z%,[b,a] =
a’xt,[c,a] = b%2",[d,a] = a®b%x", [c,b] = a®b*2V,[c,d] = z¥, 2% = 1,[z,a] =
[,b] = [z,¢] = [z,d] = 1). Since d~2%a® € Z(G), [dd 2 2l = 1. On

the other hand, [d,d"%a?] = [d,da?] = [d, a] [d,a,a] = (a®V*x )2[a2b2x“,a] =
atla®, b~ ]b4[b2 a) = [v?, d]a*d? = a4b4[b a)’[b, a,b] = b4[a b] = b*[a, b]*[a, b, a]
=b*a"%. So a* = b*. It follows by a? = d2x™ that a* = d4 By b? = 021‘ we
have b* — ¢4, Thus a* —b4—c =d*.
Assume a* = b* = ¢* = d* = z. Then it follows by [d,b] = a?z® that
[d,b]* = (a®2*)". On the other hand,
14, 8" = [d°,b] = [da2b?, ba®] = [d, ba2]" " [a®V, ba?)]
= [d,a®" " [d, B 0262, a?)[a®?, B] = [d, a?][d, b][a®, b]
= [d,a’[d, 0, a)[d. H[a,b"a, b.a] = (@®Va") (V2" ala’a"a™
= a*[a®, b2 b?, alazta=* = a*b[b, a)’[b, a, bla*za?

= a*b*a*[a?,ba’z*a* = [a,b)*[a, b, ala®z® = a®x°x.
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But (a?2°)" = a?z°, a contradiction. So a* = b* = ¢* = d* = 1. As-

bume G = <a e, dla* = bt =t = d* = 1,6® = 2™, 0% = 2", [d,b] =
5 [b,a] = a®x ,[c, a] = b%z", [d, a] = a*b?z¥, [c,b] = a®b?z?, [c,d] = 2, 2*

[ al = [ ,b] = [z,¢] = [z,d] = 1). By calculation we have Ql(G) =
(a 7b27 z) < Z(G). If G € S, then by |G| = 27 we have H < G for any
H < G and |[H| > 2% If |H| = 23, then H = Q;(Q) if exp(H) = 2, and H is
abelian if exp(H) = 22 (If not, H = M(2, 1), this contradicts Q1 (G) < Z(Q)).
It follows that G is a meta-Hamilton p-group. But by checking the classification
of meta-Hamilton p-groups [1] we know there does not exists such a group, a
contradiction.

<=: By Lemmas 2.8, 2.9 we have G € S3 for G = one of the groups of type
(1), (2), and (3). If G = the group of type (4), then G’ = (a?) x (b?) = Z(G) =
21(G).

It is easy to prove that all quotient groups of order 2° of G are isomorphic
to Qg * Dsg.

For any H ¥ G, we prove [Ng(H) : H| = 23 as follows. Thus G € Ss.

If |[H| = 2%, then |H N Q(G)| = 2. Let G = G/H N Q(G). Since |G| 25
G = the group of type (3). But |H| = 23. It follows by Lemma 2.9 that H é
So H 4@, a contradiction.

If |[H| = 23, then |H N Q1(G)| = 2. Let G = G/H N Q(G). Since |G| = 25,
G =2 the group of type (3). But |H| = 22. It follows by Lemma 2.9 that H <G.
So H < @, a contradiction.

If |[H| = 22, then |H N Q1(G)| = 2. Let G = G/H N Q4 (G). Since |G| = 25,
G = the group of type (3). But |H| = 2. It follows by H ¢ G that H 4 G. By
Lemma 2.9 we have |Ng(H) : H| = 23. Thus |[Ng(H) : H| = |[Ng(H) : H| =
23

If |H| = 2, since Q1(GQ) = (a®) x (b?) = Z(G), H < G, a contradiction. [
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