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POSITIVE SOLUTIONS FOR A CLASS OF TELEGRAPH

SYSTEM WITH MULTIPARAMETERS

Fanglei Wang and Yukun An

Abstract. In this paper, we study the existence, non-existence, and
multiplicity of positive solutions for a coupled telegraph system using the
fixed-point theorem of cone expansion/compression type, the upper-lower

solutions method, and fixed point index theory.

1. Introduction

In recent years, the study of semilinear elliptic problems in annular domains
has received considerable attention. In [1, 2, 4, 6], the authors considered the
existence of positive solutions of the following elliptic system:

∆u+ λk1(|x|)f(u, v) = 0,

∆v + µk2(|x|)g(u, v) = 0 in Ω,

u = v = 0 on ∂Ω

either for λ = µ or λ ̸= µ, where (λ, µ) ∈ D+ =: R2
+\{(0, 0)}, ki ∈ C([r1, r2],

R+) (i = 1, 2), which does not vanishing identically on any subinterval of
[r1, r2] and f, g ∈ C(R2

+,R+\{0}). In particular, we mention the works of
Dunninger and Wang on homogeneous Dirichlet boundary conditions, as well
as that of Lee on nonhomogeneous Dirichlet boundary conditions. On the
basis of [2, 6], X. Yang studied the existence of positive solutions for 2m-order

nonlinear differential systems in [16]. And J. M. do Ó et al. studied the
existence, non-existence, and multiplicity of positive solutions for a class of
systems of second-order ordinary differential equations

−u′′ = g1(t, u, v, a, b), in (0, 1),

−v′′ = g2(t, u, v, a, b), in (0, 1),

u(0) = v(0) = u(1) = v(1),
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using the fixed-point theorem of cone expansion/compression type, the upper-
lower solutions method, and degree arguments in [9, 10].

Because of its important physical background, there are more people who
have paid attention to the existence of time-periodic solutions of the telegraph
equation or system with various boundary conditions for space variable x, see
[5, 7, 8, 11, 12, 13, 14, 15] and the references therein. By using the fixed-
point theorem of cone expansion/compression type, the upper-lower solutions
method, and degree arguments, our study will be concerned with the existence
of positive solutions for the following coupled telegraph system

utt − uxx + c1ut + a11(t, x)u+ a12(t, x)v = f1(t, x, u, v, λ, µ),

vtt − vxx + c2vt + a21(t, x)u+ a22(t, x)v = f2(t, x, u, v, λ, µ),

u(t+ 2π, x) = u(t, x+ 2π) = u(t, x), (t, x),

v(t+ 2π, x) = v(t, x+ 2π) = v(t, x), (t, x),

(1)

where ci > 0 is constant, λ, µ are parameters, a11, a22 ∈ C(R2,R+), a12,
a21 ∈ C(R2,R−), fi ∈ C(R2 ×R4

+,R+), and aij , fi are 2π-periodic in t and x.
In particular, the method of upper and lower solutions will need the maximum
principle of the coupled linear telegraph system, which was built in [15].

The paper is organized as follows: In Section 2, we make some preliminaries;
Section 3 is devoted to proving the main results.

2. Preliminaries

Let ⊤2 be the torus defined as ⊤2 = (R/2πZ)×(R/2πZ). Doubly 2π-periodic
functions will be identified to be functions defined on ⊤2. We use the notations

Lp(⊤2) , C(⊤2) , Cα(⊤2) , D(⊤2) = C∞(⊤2) , . . .

to denote the spaces of doubly periodic functions with the indicated degree of
regularity. The space D

′
(⊤2) denotes the space of distributions on ⊤2.

Here and in the next, by a doubly periodic solution of (1) we mean that a
(u, v) ∈ L1(⊤2)× L1(⊤2) satisfies (1) in the distribution sense, i.e.,

∫
⊤2

u(φtt − φxx − c1φt + a11φ) + a12
∫
⊤2

vφ =
∫
⊤2 f1φ,∫

⊤2
v(ϕtt − ϕxx − c2ϕt + a22ϕ) + a21

∫
⊤2

uϕ =
∫
⊤2 f2ϕ,

∀(φ, ϕ) ∈ D′(⊤2)×D′(⊤2).

For convenience, we rewritten this system as{
utt − uxx + c1ut + a11(t, x)u+ a12(t, x)v = f1(t, x, u, v, λ, µ),

vtt − vxx + c2vt + a21(t, x)u+ a22(t, x)v = f2(t, x, u, v, λ, µ), in D′(⊤2).

First, we consider the linear equation

utt − uxx + ciut − λiu = hi(t, x), in D
′
(⊤2),(2)

where ci > 0, λi ∈ R, hi(t, x) ∈ L1(⊤2) (i = 1, 2).



POSITIVE SOLUTIONS FOR A CLASS OF TELEGRAPH SYSTEM 155

Let £λi be the differential operator

£λi = utt − uxx + ciut − λiu,

acting on functions on ⊤2. Following the discuss in [7, 13], we know that if
λi < 0, £λi has the resolvent Rλi

Rλi : L
1(⊤2) → C(⊤2), hi 7→ ui,

where ui is the unique solution of (2), and the restriction of Rλi on Lp(⊤2)(1 <
p < ∞) or C(⊤2) is compact. In particular, Rλi : C(⊤2) → C(⊤2) is a
completely continuous operator.

For λi = −c2i /4, the Green function Gi(t, x) of the differential operator £λi

is explicitly expressed, see Lemma 5.2 in [13]. From the definition of Gi(t, x),
we have

Gi := ess inf Gi(t, x) = e−3ciπ/2/(1− e−ciπ)2,

Gi := ess sup Gi(t, x) = (1 + e−ciπ)/2(1− e−ciπ)2.

Let X denote the Banach space C(⊤2). Then X is an ordered Banach space
with cone

K0 = {u ∈ X | u(t, x) ≥ 0 , ∀ (t, x) ∈ ⊤2}.

Now, we consider the equation (2) when −λi is replaced by aii(t, x) ≤ c2i
4 . In

[7], the author has proved the following unique existence and positive estimate
result.

Lemma 2.1. Let hi(t, x) ∈ L1(⊤2), X be the Banach space C(⊤2). Then the
equation (2) has a unique solution ui = Pihi, Pi : L1(⊤2) → X is a linear
bounded operator with the following properties,

(i) Pi : C(⊤2) → C(⊤2) is a completely continuous operator;
(ii) If hi > 0 , a.e (t, x) ∈ ⊤2, Pihi has the positive estimate

Gi∥hi∥L1 ≤ (Pihi) ≤
Gi

Gi∥aii∥L1

∥hi∥L1 .(3)

To prove our main results, we need the following the fixed-point theorem
of cone expansion/compression type, and fixed point index theory, the upper-
lower solutions method. We refer to, for example, Guo and Lakshmikantham
[3] for proofs and further results.

Lemma 2.2. Let E be a Banach space, and let K ⊂ E be a cone in E, Assume
Ω1, Ω2 are open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let T : K∩(Ω2\Ω1) →
K be a completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω2;
(ii) ∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).
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Lemma 2.3. Let E be a Banach space with norm ∥ · ∥, and let K be a cone in
E. For r > 0, define Kr = {u ∈ K : ∥u∥ < r}. Assume that T : Kr → K is a
compact map such that Tu ̸= u, for u ∈ ∂Kr = {u ∈ K : ∥u∥ = r}.

(i) If ∥u∥ ≤ ∥Tu∥ for all u ∈ ∂Kr, then i(T,Kr,K) = 1.
(ii) If ∥u∥ ≥ ∥Tu∥ for all u ∈ ∂Kr, then i(T,Kr,K) = 0.

Lemma 2.4. Let E be a Banach space, K a cone in E and Ω bounded open
in X. Let 0 ∈ Ω and T : K ∩Ω → K be condensing. Suppose that Tx ̸= λx for
all x ∈ K ∩ ∂Ω and all λ ≥ 1. Then

i(T,K ∩ Ω,K) = 1.

Lemma 2.5 ([15]). Assume aii(t, x) ∈ C(⊤2), 0 ≤ aii(t, x) ≤ c2i
4 for (t, x) ∈

⊤2, and
∫
⊤2 aii(t, x)dtdx > 0; a12(t, x), a21(t, x) ∈ C(⊤2, R−). In addition,

∥a12∥L1G1 < G1∥a11∥L1 , ∥a21∥L1G2 < G2∥a22∥L1 . Then the linear telegraph
system

utt − uxx + c1ut + a11(t, x)u+ a12(t, x)v = g1(t, x),

vtt − vxx + c2vt + a21(t, x)u+ a22(t, x)v = g2(t, x), in D
′
(⊤2)

u(t+ 2π, x) = u(t, x+ 2π) = u(t, x),

v(t+ 2π, x) = v(t, x+ 2π) = v(t, x),

(4)

where gi(t, x) ∈ L1(⊤2), has at least one solution in C(⊤2)×C(⊤2) and satisfies
the maximum principle.

Remark 2.6. If ∥a12∥L1G1 < 1
2G1∥a11∥L1 , ∥a21∥L1G2 < 1

2G2∥a22∥L1 , then the
system (4) also satisfies the maximum principle.

Now, we consider the system
utt − uxx + c1ut + a11(t, x)u+ a12(t, x)v = f1(t, x, u, v),

vtt − vxx + c2vt + a21(t, x)u+ a22(t, x)v = f2(t, x, u, v),

u(t+ 2π, x) = u(t, x+ 2π) = u(t, x), (t, x) ∈ R2,

v(t+ 2π, x) = v(t, x+ 2π) = v(t, x), (t, x) ∈ R2,

(5)

where aij , fi satisfy assumptions (H1) and (H3).

Definition 2.7. Let α = (α1, α2) ∈ C(⊤2,R) × C(⊤2,R), we call (α1, α2) a
lower solution of the problem (5) for all (t, x) ∈ ⊤2 if

α1tt − α1xx + c1α1t + a11(t, x)α1 + a12(t, x)α2 ≤ f1(t, x, α1, α2),

α2tt − α2xx + c2α2t + a21(t, x)α1 + a22(t, x)α2 ≤ f2(t, x, α1, α2),

in D
′

+(⊤2)×D
′

+(⊤2)

α1(t+ 2π, x) = α1(t, x+ 2π) = α1(t, x), (t, x) ∈ R2,

α2(t+ 2π, x) = α2(t, x+ 2π) = α2(t, x), (t, x) ∈ R2.
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Definition 2.8. Let β = (β1, β2) ∈ C(⊤2,R) × C(⊤2,R), we call (β1, β2) a
upper solution of the problem (5) for all (t, x) ∈ ⊤2 if

β1tt − β1xx + c1β1t + a11(t, x)β1 + a12(t, x)β2 ≥ f1(t, x, β1, β2),

β2tt − β2xx + c2β2t + a21(t, x)β1 + a22(t, x)β2 ≥ f2(t, x, β1, β2),

in D
′

+(⊤2)×D
′

+(⊤2)

β1(t+ 2π, x) = β1(t, x+ 2π) = β1(t, x), (t, x) ∈ R2,

β2(t+ 2π, x) = β2(t, x+ 2π) = β2(t, x), (t, x) ∈ R2.

Remark 2.9. In the next, the inequalities related to upper and lower solutions
are in the distribution sense, see [15].

Lemma 2.10 ([15]). Let (α1(t, x), α2(t, x)) and (β1(t, x), β2(t, x)) be lower and
upper solutions of (8), respectively, such that

(B1) 0 ≤ (α1(t, x), α2(t, x)) ≤ (β1(t, x), β2(t, x)), ∀(t, x) ∈ ⊤2;
(B2) fi(t, x, u, v) for fixed (t, x) ∈ ⊤2, is quasi-monotone nondecreasing with

respect to u and v. Then the problem (5) has at least one solution (u, v) ∈ Dβ
α

such that

(α1(t, x), α2(t, x)) ≤ (u, v) ≤ (β1(t, x), β2(t, x)), (t, x) ∈ ⊤2.

3. Main result

For convenience, we now state our main result as following.

Theorem A. Assume the following conditions hold:

(H1) aii ∈ C(⊤2), 0 ≤ aii(t, x) ≤ c2i
4 for (t, x) ∈ ⊤2, and

∫
⊤2 aii(t, x)dtdx >

0, a12, a21 ∈ C(⊤2,R−), a11(t, x) + a12(t, x) ≥ 0, a21(t, x) + a22(t, x) > 0,
∀(t, x) ∈ ⊤2, ∥a12∥L1G1 < 1

2G1∥a11∥L1 , ∥a21∥L1G2 < 1
2G2∥a22∥L1 ;

(H2) The functions fi : ⊤2 × [0,+∞)4 → [0,+∞) are continuous and non-
decreasing in the last four variables. In other words,

fi(t, x, u1, v1, λ1, µ1) ≤ fi(t, x, u2, v2, λ2, µ2) for i = 1, 2

whenever (u1, v1, λ1, µ1) ≤ (u2, v2, λ2, µ2), where the inequality is understood
inside every component;

(H3) Given λ, µ ≥ 0, for all M > 0, there exist hi(t, x) ∈ L1(⊤2) such that

0 ≤ fi(t, x, u, v, λ, µ) ≤ hi(t, x) for all (t, u, v) ∈ ⊤2 × [0,M ]2;

(H4) There exists a function h(t, x) ∈ L1(⊤2) such that

∥h∥L1 <
1

M∗

and

lim
|(u,v,λ,µ)|→0

f1(t, x, u, v, λ, µ) + f2(t, x, u, v, λ, µ)

u+ v + λ+ µ
<

1

2
h(t, x)

for each (t, x) ∈ ⊤2, where M∗ = max{ G1

G1∥a11∥L1
, G2

G2∥a22∥L1
};
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(H5)

lim
u→+∞

f1(t, x, u, v, 0, 0) + f2(t, x, u, v, 0, 0)

u
= +∞

uniformly for v ≥ 0 and (t, x) ∈ ⊤2,

lim
v→+∞

f1(t, x, u, v, 0, 0) + f2(t, x, u, v, 0, 0)

v
= +∞

uniformly for u ≥ 0 and (t, x) ∈ ⊤2,

lim
|(λ,µ)|→+∞

(f1(t, x, 0, 0, λ, µ) + f2(t, x, 0, 0, λ, µ)) = +∞

uniformly for (t, x) ∈ ⊤2.
Then there exist a constant λ > 0 and a non-increasing continuous function
Γ : [0, λ] → [0,+∞) so that, for all λ ∈ [0, λ], the system (1) has:

(i) at least one positive solution for 0 ≤ µ ≤ Γ(λ);
(ii) no positive solutions for µ > Γ(λ);
(iii) at least two positive solutions for 0 < µ < Γ(λ).

Let E denote the Banach space C(⊤2) × C(⊤2) with the norm ∥(u, v)∥ =
∥u∥∞ + ∥v∥∞, ∥u∥∞ = max(t,x)∈⊤2 |u(t, x)|. The cone K is defined as K =
K1 ×K2, where

K1 = {u ∈ C(⊤2) : u ≥ δ1∥u∥∞}, K2 = {v ∈ C(⊤2) : v ≥ δ2∥v∥∞},

and δ1 =
G1

2∥a11∥L1

G1
, δ2 =

G2
2∥a22∥L1

G2
.

By Pi(i = 1, 2) : L1(⊤2) → C(⊤2), we denote the solution operators as
follows, respectively

utt − uxx + c1ut + a11(t, x)u = h1(t, x),

vtt − vxx + c2vt + a22(t, x)v = h2(t, x).

Define mapping T : K → E by

T (u, v) = (Q1(u, v), Q2(u, v)),

where

Q1(u, v) := P1(−a12v + f1(t, x, u, v, λ, µ)),

Q2(u, v) := P2(−a21u+ f2(t, x, u, v, λ, µ)).

First, we will show the existence of a positive solution for small parameters.

Lemma 3.1 ([14]). Fix λ, µ ≥ 0. The operator T : E → E is well defined,
T (K) ⊆ K, and T is completely continuous.

Lemma 3.2. Assume (H1), (H3), (H4) hold. Then there exist R0 > 0 and ζ0
such that, for all (u, v) ∈ KR0 and all (λ, µ) with 0 < λ+ µ < ζ0, we have

∥T (u, v)∥ < ∥(u, v)∥.
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Proof. From condition (H4), we choose σ ∈ (0, 1) such that

M∗∥h(t, x)∥L1 < 1− σ.

In addition, there exists R > 0 such that, for all 0 ≤ u + v + λ + µ ≤ R and
(t, x) ∈ ⊤2, we have

f1(t, x, u, v, λ, µ) + f1(t, x, u, v, λ, µ) ≤
1

2
h(t, x)(u+ v + λ+ µ).

Thus, it follows from condition (H1), (H4), for all (u, v) ∈ K(1−σ)R, λ + µ ∈
(0, σR) and (t, x) ∈ ⊤2, we have

Q1(u, v)(t, x) +Q2(u, v)(t, x)

= P1(−a12v + f1(t, x, u, v, λ, µ)) + P2(−a21v + f2(t, x, u, v, λ, µ))

≤ G1

G1∥a11∥L1

∥ − a12v + f1(t, x, u, v, λ, µ)∥L1

+
G2

G2∥a22∥L1

∥ − a21u+ f2(t, x, u, v, λ, µ)∥L1

≤ G1∥a12∥L1

G1∥a11∥L1

∥v∥∞ +
G2∥a21∥L1

G2∥a22∥L1

∥u∥∞

+M1∥f1(t, x, u, v, λ, µ) + f2(t, x, u, v, λ, µ)∥L1

≤ 1

2
(∥u∥∞ + ∥v∥∞) +

1

2
M∗∥h(t, x)∥L1(∥u∥∞ + ∥v∥∞ + λ+ µ)

< (1− σ)R

by (H1) and Lemma 2.1. Now taking R0 = (1 − σ)R and ζ0 = σR0, for all
(u, v) ∈ KR0 , 0 < λ+ µ < ζ0, by the above inequality, we have

∥T (u, v)∥ = ∥Q1(u, v)∥∞ + ∥Q2(u, v)∥∞ < R0 = ∥(u, v)∥. □

Lemma 3.3. Assume (H1)-(H3), (H5) hold. There exists R1 > 0 such that,
for all (u, v) ∈ KR1

and (t, x) ∈ ⊤2, we have

∥T (u, v)∥ > ∥(u, v)∥.

Proof. Inspired by some ideas of Lemma 3.2 in [9]. Now we show the proof.
For otherwise, there would exist an increasing sequence Rn → +∞, and a

sequence {(un, vn)} inK so that the real sequence {Rn} defined by ∥(un, vn)∥ =
Rn would satisfy

∥T (u, v)∥ ≤ ∥(u, v)∥.
We consider two cases:
Case I : ∥un∥∞

Rn
→ 0 as n → +∞. Consequently, ∥vn∥∞

Rn
→ 1 as n → +∞.

By conditions (H1)-(H3), (H5), we have

T (un, vn) = Q1(un, vn) +Q2(un, vn)

= P1(−a12vn + f1(t, x, un, vn, λ, µ))
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+ P2(−a21vn + f2(t, x, un, vn, λ, µ))

≥ G1∥ − a12vn + f1(t, x, un, vn, λ, µ)∥L1

+G2∥ − a21un + f2(t, x, un, vn, λ, µ)∥L1

≥ G∗∥f1(t, x, un, vn, λ, µ) + f2(t, x, un, vn, λ, µ)∥L1

≥ G∗∥f1(t, x, δ∥un∥∞, δ∥vn∥∞, 0, 0)

+ f2(t, x, δ∥un∥∞, δ∥vn∥∞, 0, 0)∥L1

≥ G∗∥
Jn(t, x)

δ∥vn∥∞
δ∥vn∥∞∥L1

= G∗δMn
∥vn∥∞
Rn

Rn,

where

δ = min

{
G1

2∥a11∥L1

G1

,
G2

2∥a22∥L1

G2

}
,

G∗ = min{G1, G2},
Jn(t, x) = f1(t, x, δ∥un∥∞, δ∥vn∥∞, 0, 0) + f2(t, x, δ∥un∥∞, δ∥vn∥∞, 0, 0)

and

Mn = ∥ Jn(t, x)
δ∥vn∥∞

∥L1 → +∞.

Therefore, we would have

1 ≥ G∗δMn
∥vn∥∞
Rn

,

which is impossible.

Case II : ∥un∥∞
Rn

→ a > 0 as n → +∞. Similarly, in this case we would have

T (un, vn) = Q1(un, vn) +Q2(un, vn)

= P1(−a12vn + f1(t, x, un, vn, λ, µ))

+ P2(−a21vn + f2(t, x, un, vn, λ, µ))

≥ G1∥ − a12vn + f1(t, x, un, vn, λ, µ)∥L1

+G2∥ − a21un + f2(t, x, un, vn, λ, µ)∥L1

≥ G∗∥f1(t, x, un, vn, λ, µ) + f2(t, x, un, vn, λ, µ)∥L1

≥ G∗∥f1(t, x, δ∥un∥∞, δ∥vn∥∞, 0, 0)

+ f2(t, x, δ∥un∥∞, δ∥vn∥∞, 0, 0)∥L1

≥ G∗∥
Jn(t, x)

δ∥un∥∞
δ∥un∥∞∥L1

= G∗δMn
∥un∥∞
Rn

Rn.
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From Case I, we also can have

1 ≥ G∗δMn
∥un∥∞
Rn

,

which is impossible. □

Taking into account Lemma 3.2 and Lemma 3.3, the following is a direct
consequence of Lemma 2.2.

Lemma 3.4. There exists ζ0 > 0 so that, for all λ and µ with 0 < λ+µ < ζ0,
the operator T has a fixed point (u, v) ∈ K satisfying R0 < ∥(u, v)∥ < R.

Next, we will give a priori bounds and non-existence of solutions.

Lemma 3.5. Assume that the system (1)λ2µ2 has a non-negative solution and
that

(0, 0) ≤ (λ1, µ1) ≤ (λ2, µ2).

Then the system (1)λ1µ1
has a non-negative solution.

Proof. Let the pair (u2, v2) be a non-negative solution of the system (1)λ2µ2 .
Since f1 and f2 are non-decreasing functions in the last two variables, we have
that (u2, v2) is an upper solution of the system (1)λ1µ1 . By the condition (H1)
and Lemma 2.5, it is to know that (0, 0) is a lower solution of the system
(1)λ1µ1 . The conclusion results from Lemma 2.10. □

Lemma 3.6. Assume (H1)-(H3), (H5) hold. Then there exists a positive con-
stant C > 0 such that, for all positive solution (u, v) of the system (1), we
have

∥(u, v)∥ ≤ C,

where C may be chosen independent of λ and µ.

Proof. The proof is analogous to that of Lemma 3.2 in [10]. □

Remark 3.7. Having the similar discussion as Remark 1 in [9], we also know
that there exists ξ > 0 such that, for all (λ, µ) ∈ (0,+∞) × (0,+∞) with
|(λ, µ)| > ξ, the system (1) has no positive solutions.

Define a set S by

S = {λ > 0 : the system (1) has a positive solution for some µ > 0}.

From Lemma 3.4 and Remark 3.7, it implies that S is non-empty and
bounded. Thus

0 < λ = supS < +∞.

Using the upper-lower solutions method, it is easy to see that for all λ ∈ (0, λ),
there exists µ > 0 such that the system (1)λµ has a positive solution. We now

define the function Γ : [0, λ] → [0,+∞) by

Γ(λ) = sup{µ : the system (1) has a positive solution}.
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By Lemma 3.5, the function Γ is continuous and non-increasing. Moreover,
Γ(0) > 0 as is easily verified. We claim that Γ(λ) is attained. In fact, it suffices
to use Lemma 3.6 and the compactness of the operator T . Finally, it follows
from the definition of the function that the system (1) has at least one positive
solution for 0 ≤ µ ≤ Γ(λ), and furthermore that it has no positive solutions for
µ > Γ(λ), which proves parts (i) and (ii) of Theorem 1.1, respectively.

Finally, we will establish existence of two positive solutions of the system
(1), which corresponds to proving part (iii) of Theorem 1.1.

Fix λ ∈ [0, λ], and let (u∗, v∗) is the solution (1) at (λ,Γ(λ)) which is obtained
using Lemma 3.5. Next we will establish another solution of the system (1)λ,µ
for 0 < µ < Γ(λ).

Lemma 3.8. For each 0 < µ < Γ(λ), there exists ϵ0 > 0 so that, for all
0 < ϵ ≤ ϵ0 and all (t, x) ∈ ⊤2, (u∗

ϵ , v
∗
ϵ ) is the upper solution of (1) at (λ, µ),

where u∗
ϵ = u∗ + ϵ, v∗ϵ = v∗ + ϵ.

Proof. Since fi is increasing, we have that for each 0 < µ < Γ(λ) we may find
a positive constant I = I(µ) so that, for all (t, x) ∈ ⊤2, we have

fi(t, x, u
∗, v∗, λ,Γ(λ))− fi(t, x, u

∗, v∗, λ, µ) ≥ I > 0.

By the uniform continuity of fi, there exists 0 < ϵ0 so that, for all (t, x) ∈ ⊤2

and all 0 < ϵ ≤ ϵ0, we have

|fi(t, x, u∗
ϵ , v

∗
ε , λ, µ)− fi(t, x, u

∗, v∗, λ, µ)| ≤ I

2
.

From the conditions, we also have a11(t, x)+ a12(t, x) ≥ 0. On the contrary,
if a11(t, x) + a12(t, x) < 0, namely, a11(t, x) < −a12(t, x), then ∥a11∥L1 ≤
∥a12∥L1 , which is contradict with the condition ∥a12∥L1G1 < 1

2G1∥a11∥L1 . Let
u∗
ϵ = u∗ + ϵ, v∗ϵ = v∗ + ϵ, from (H1), (H2), then

u∗
ϵtt − u∗

ϵxx + c1u
∗
ϵt + a11(t, x)u

∗
ϵ + a12(t, x)v

∗
ϵ − f1(t, x, u

∗ + ϵ, v∗ + ϵ, λ, µ)

= u∗
tt − u∗

xx + c1u
∗
t + a11(t, x)u

∗ + a12(t, x)v
∗ + a11(t, x)ϵ+ a12(t, x)ϵ

f1(t, x, u
∗ + ϵ, v∗ + ϵ, λ, µ)

= f1(t, x, u
∗, v∗, λ,Γ(λ))− f1(t, x, u

∗ + ϵ, v∗ + ϵ, λ, µ)

+ a11(t, x)ϵ+ a12(t, x)ϵ

> f1(t, x, u
∗, v∗, λ,Γ(λ))− f1(t, x, u

∗, v∗, λ, µ)

+ f1(t, x, u
∗, v∗, λ, µ)− f1(t, x, u

∗ + ϵ, v∗ + ϵ)

≥ I − I

2
> 0

for all (t, x) ∈ ⊤2. The inequality for v∗ϵ can be shown similarly. Hence (u∗
ϵ , v

∗
ϵ )

is an upper solution of (1) at (λ, µ) for all 0 < ϵ ≤ ϵ0. □

Proof of (iii) Theorem 1.1. Define the set

D = {(u, v) ∈ E : −ε < u < u∗
ϵ ,−ε < v < v∗ϵ }.
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Then D is bounded open set in E and 0 ∈ D. The map T satisfies K ∩D → K
and is condensing, since it is completely continuous. Now let (u, v) ∈ K ∩
∂D, then there exists (t0, x0) ∈ ⊤2 such that either u(t0, x0) = u∗

ϵ (t0, x0)
or v(t0, x0) = v∗ϵ (t0, x0). We assume u(t0, x0) = u∗

ϵ (t0, x0) without loss of
generality, then by Lemma 3.8,

Q1(u, v)(t0, x0) : = P1(−a12v + f1(t0, x0, u, v, λ, µ))

≤ P1(−a12v
∗
ϵ + f1(t0, x0, u

∗
ϵ , u

∗
ϵ , λ, µ))

≤ ũ∗(t0, x0) = u(t0, x0) ≤ θu(t0, x0)

for all θ ≥ 1. Thus T (u, v) ̸= θ(u, v) for all (u, v) ∈ K ∩ ∂D and θ ≥ 1, Lemma
2.4 now implies that

i(T,K ∩D,K) = 1.

On the other hand, a slight change in the proof of Lemma 3.6 shows the
existence of an r > 0 sufficiently large, say r > R1, where R1 is as in Lemma
3.4, so that

∥T (u, v)∥ > ∥(u, v)∥
for every ∥(u, v)∥ = r and (u, v) ∈ K.

Let R = max{C + 1, r, ∥(u∗
ϵ , v

∗
ε )∥}, where C is as in Lemma 3.6. Set

KR = {(u, v) ∈ K : ∥(u, v)∥ < R}.

Then Lemma 3.6 implies that T (u, v) ̸= (u, v) for (u, v) ∈ KR. Consequently,
part (i) of Lemma 2.3 implies i(T,KR,K) = 0.

Now by the additivity property of the fixed point index we obtain

i(T,K ∩ Ω,K) + i(T,KR\K ∩ Ω,K) = i(T,KR,K) = 0.

Since i(T,K ∩ Ω,K) = 1, we conclude i(T,KR K ∩ Ω,K) = −1. Therefore, T
has another fixed point in KR K ∩ Ω, which was to be shown. □
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