*l***-RANKS OF CLASS GROUPS OF FUNCTION FIELDS**

Sunghan Bae and Hwanyup Jung

ABSTRACT. In this paper we give asymptotic formulas for the number of ℓ -cyclic extensions of the rational function field $\mathbf{k} = \mathbb{F}_q(T)$ with prescribed ℓ -class numbers inside some cyclotomic function fields, and density results for ℓ -cyclic extensions of k with certain properties on the ideal class groups.

0. Introduction

Let \mathbb{Q} be the field of rational numbers and ℓ be a prime number. In the 1980s F. Gerth studied extensively the asymptotic behavior of ℓ -cyclic extensions of \mathbb{Q} with certain conditions on the ideal class groups and ramified primes. Let us recall Gerth's results more precisely. Write $N_{s,x}$ for the number of ℓ -cyclic extensions of \mathbb{Q} with conductor $\leq x$ and ℓ -class number ℓ^s . In [5], it is shown that to obtain an asymptotic formula for $N_{s,x}$, it suffices to count the number $M_{s+1,x}$ of ℓ -cyclic extensions of \mathbb{Q} whose conductor is $\leq x$ and divisible by exactly s + 1 distinct primes, and whose ℓ -class number is ℓ^s . In [6], a matrix M over \mathbb{F}_{ℓ} is associated to each ℓ -cyclic extension F of \mathbb{Q} with s + 1 ramified primes such that the ℓ -class number of F is ℓ^s precisely when rank(M) = s, and an asymptotic formula for $N_{s,x}$ is given by studying the asymptotic behavior of the number of such matrices. In [8], for $\ell = 2$, an effective algorithm for computing the density $d_{t,e}$ (resp. $d'_{t,e}$) of the quadratic fields with 4-class rank e (in the narrow sense) in the set of imaginary (resp. real) quadratic fields with t ramified primes, and explicit formulas for their limiting densities $d_{\infty,e} = \lim_{t\to\infty} d_{t,e}$ and $d'_{\infty,e} = \lim_{t\to\infty} d'_{t,e}$ are given. An explicit formula for the limiting density $d_{\infty,e}$, which depends only on ℓ and e, is given in [10] for an arbitrary prime number ℓ . Similar results for ℓ^n -cyclic extensions of \mathbb{Q} with prescribed (narrow) genus groups are given in [9].

Let $\mathbf{k} = \mathbb{F}_q(T)$ be the rational function field over the finite field \mathbb{F}_q . Let ℓ be a prime number different from the characteristic of \mathbf{k} and r be the smallest

O2012 The Korean Mathematical Society

Received August 10, 2010; Revised July 11, 2011.

²⁰¹⁰ Mathematics Subject Classification. 11R58, 11R29, 11R45.

Key words and phrases. class groups, function fields.

The first author was supported by SRC program (ASARC R11-2007-035-01001-0).

The second author was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MEST) (No. 2009-0071789).

positive integer such that $\ell \mid q^r - 1$. In this article we study analogous problems for ℓ -cyclic extensions of k inside some cyclotomic function fields. The content of this paper is as follows. In §1 we recall several asymptotic formulas in $\mathbb{A} = \mathbb{F}_q[T]$, which can be found in [11] and [12]. In §2 we recall the genus theory for function fields [2] and extend some results of Wittmann [13] to the narrow case. In §3.1 we give an asymptotic formula for the number $N_{s,rn}$ of ℓ -cyclic extensions F inside some cyclotomic function fields with ℓ -class number ℓ^s and with conductor N of degree rn in the case r > 1. Similar results in the case r = 1 are given in §3.2. In §4 we give the density for ℓ -ranks in ℓ -cyclic function fields. In §5 we give a generalization of §4 to ℓ^m -cyclic extensions of k inside some cyclotomic function fields.

1. Some asymptotic formulas in $\mathbb{A} = \mathbb{F}_q[T]$

In this section we recall several asymptotic formulas in $\mathbb{A} = \mathbb{F}_q[T]$, which will be used later in this paper. For the details and proofs we refer to [11] and [12].

• P(n):= the set of monic irreducible polynomials in \mathbb{A} of degree n, and p(n) = |P(n)|. Then

(1.1)
$$p(n) = \frac{q^n}{n} + O\left(\frac{q^{n/2}}{n}\right)$$
 ([11, Chap. 8], [12, Theorem 2.2]).

• P(n,k):= the set of all square-free monic polynomials of degree n with k-irreducible factors, and p(n,k) = |P(n,k)|. Then

(1.2)
$$p(n,k) = \frac{q^n (\log n)^{k-1}}{(k-1)!n} + O\left(\frac{q^n (\log n)^{k-2}}{n}\right)$$
 ([11, Theorem 9.9]).

• $P_r(rn, k)$:= the set of all square-free monic polynomials of degree rn with k-irreducible factors whose degrees are divisible by r, and $p_r(rn, k) = |P_r(rn, k)|$. Following the method of [11, §9],

(1.3)
$$p_r(rn,k) = \frac{q^{rn}(\log n)^{k-1}}{(k-1)!r^kn} + O\left(\frac{q^{rn}(\log n)^{k-2}}{n}\right).$$

Intuitively, (1.3) follows from (1.2) and that the probability that a prime whose degree is divisible by r is $\frac{1}{r}$. For $A, M \in \mathbb{A}$, relatively prime,

• P(n, A, M):= the set of monic irreducible polynomials of degree n which are congruent to A modulo M, and p(n, A, M) = |P(n, A, M)|. Then

(1.4)
$$p(n, A, M) = \frac{q^n}{\phi(M)n} + O\left(\frac{q^{n/2}}{n}\right)$$
 ([12, Theorem 4.8]),

where $\phi(M) = |(\mathbb{A}/M\mathbb{A})^{\times}|.$

Also, for a nontrivial Dirichlet character χ , we have

(1.5)
$$\sum_{P, \deg P=n} \chi(P) = O\left(\frac{q^{n/2}}{n}\right) \quad ([12, \S4 (4), (5)]).$$

From (1.1), we have

(1.6)
$$\sum_{P,\deg P \le n} \frac{\deg P}{q^{\deg P}} = n + O(1),$$

(1.7)
$$\sum_{P, r \mid \deg P \leq nr} \frac{\deg P}{q^{\deg P}} = n + O(1),$$

(1.8)
$$\sum_{P, \deg P \le n} \frac{1}{q^{\deg P}} = \log n + O(1),$$

(1.9)
$$\sum_{P, r | \deg P \le nr} \frac{1}{q^{\deg P}} = \frac{\log n}{r} + O(1).$$

From (1.2), (1.3) and the partial summation formula, we have

(1.10)
$$\sum_{d=1}^{n} \sum_{P \in P(d,k)} \frac{1}{q^d} \sim \frac{(\log n)^k}{k!},$$

(1.11)
$$\sum_{d=1}^{n} \sum_{P \in P_r(rd,k)} \frac{1}{q^{rd}} \sim \frac{(\log n)^k}{k! r^k}.$$

One more asymptotic formula which will be used later is

(1.12)
$$\sum_{m_1 + \dots + m_k = n} \frac{1}{m_1 \cdots m_k} \sim \frac{k(\log n)^{k-1}}{n}$$

2. Genus theory for function fields

Write ∞ for the place of k associated to 1/T. Let k_{∞} be the completion of k at ∞ , i.e., $k_{\infty} = k((1/T))$. Let $\Omega = k_{\infty}(\sqrt[q-1]{-1/T})$. We only consider those function fields which can be embedded into Ω . For a monic polynomial M of \mathbb{A} , k_M denotes the cyclotomic function field of conductor M (see [12, §12]). Any abelian extension F of k inside Ω is contained in k_M for some M. The smallest such M is called the conductor of F. From now on we always assume that every extension of k is contained in some cyclotomic function field. Let ℓ be a prime number different from the characteristic of k and r be the smallest positive integer such that $\ell \mid q^r - 1$.

Let F be a ℓ -cyclic extension of k, and write $N = N_F$ for the conductor of F. Then N must be square-free since F/k is tamely ramified and for each prime divisor P of N, deg P is divisible by r, since the ramification index ℓ divides $q^{\deg P} - 1$, the order of the multiplicative group of the residue field of P. Write $N = P_1 \cdots P_t$. It is easy to see that the number of such extensions F with conductor $P_1 \cdots P_t$ is $(\ell - 1)^{t-1}$. Write H_F for the Hilbert class field of F. Then the genus field G_F of F/k is defined to be the maximal extension of F in H_F which is the compositum of F and some abelian extension of k. Let $\mathcal{Cl}(F)$ be the ideal class group of the integral closure \mathcal{O}_F of \mathbb{A} in F, and $\mathcal{Cl}(F)_\ell$ be its Sylow ℓ -subgroup. Let σ be a fixed generator of $G = \operatorname{Gal}(F/k)$ and

$$\lambda_i(F) := \dim_{\mathbb{F}_\ell} \left(\mathcal{C}l(F)_\ell^{(\sigma-1)^{i-1}} / \mathcal{C}l(F)_\ell^{(\sigma-1)^i} \right) \text{ for } i \ge 1.$$

It is known that $([2, \S 2])$

$$\mathcal{C}l(F)_{\ell}/\mathcal{C}l(F)_{\ell}^{\sigma-1} \simeq \mathcal{C}l(F)/\mathcal{C}l(F)^{\sigma-1} \simeq \operatorname{Gal}(G_F/F).$$

It is well-known that $\mathcal{C}l(F)^G_\ell$ and $\mathcal{C}l(F)_\ell/\mathcal{C}l(F)^{\sigma-1}_\ell$ are elementary abelian groups of rank λ_1 . Since F is contained in some cyclotomic function field, the inertia degree f_∞ at ∞ should be 1, and the ramification degree e_∞ is 1 if r > 1.

Now we consider the narrow case. We define the narrow Hilbert class field H_{F}^{+} of F to be the maximal abelian extension of F in Ω , unramified outside the places over ∞ . For each place v of F over ∞ we write F_{v} to denote the completion of F at v and N_{v} be the norm map from F_{v} to k_{∞} . We define a sign map $sgn_{v}: F_{v} \to \mathbb{F}_{q}$ by $sgn_{v}(x) = sgn(N_{v}(x))$, where sgn is the usual sign map on k_{∞} . An element $x \in F$ is called *totally positive* if $sgn_{v}(x) = 1$ for any v lying over ∞ . Denote by F_{+} the set of all totally positive elements of F. The narrow ideal class group $\mathcal{C}l^{+}(F)$ of F is defined to be the quotient group of fractional ideals modulo principal fractional ideals generated by elements of F_{+} . The narrow genus field G_{F}^{+} of F/k is defined to be the maximal extension of F in H_{F}^{+} which is the compositum of F and some abelian extension of k . See [2] for details on the genus theory of function fields. Let

$$\lambda_i^+(F) := \dim_{\mathbb{F}_\ell} \left(\mathcal{C}l^+(F)_{\ell}^{(\sigma-1)^{i-1}} / \mathcal{C}l^+(F)_{\ell}^{(\sigma-1)^i} \right) \text{ for } i \ge 1.$$

Note that if r > 1, then $Cl^+(F)_{\ell} = Cl(F)_{\ell}$ and so $\lambda_i^+(F) = \lambda_i(F)$. We will use the following lemmas proved in [13]. The narrow case can be proved by a similar method as in [13].

Lemma 2.1 ([13, Theorem 2.1]). Let F be as above.

- (i) If r > 1, or r = 1 and $\ell \mid \deg P_i$ for all i, then $\lambda_1(F) = t 1$.
- (ii) In all other cases, $\lambda_1(F) = t 2 + \log_{\ell}(e_{\infty}f_{\infty})$.
- (iii) $\lambda_1^+(F) = t 1.$

Let \mathfrak{p}_i be the unique prime ideal of F lying above P_i .

Lemma 2.2 ([13, Corollary 2.3, 2.4]). Let F be as above.

(i) If r > 1, then $Cl(F)^G_{\ell}$ is generated by the classes $[\mathfrak{p}_1], \ldots, [\mathfrak{p}_t]$.

(ii) If r = 1, then

$$\mathcal{C}l(F)^G_\ell = \langle [\mathfrak{p}_1], \dots, [\mathfrak{p}_t] \rangle,$$

except the case that $\ell \mid \deg P_i$ for all i and $N_{F/k}(\mathcal{O}_F^*) = (\mathbb{F}_q^*)^{\ell}$. In this case,

$$\mathcal{C}l(F)^G_\ell = \langle [\mathfrak{p}_1], \dots, [\mathfrak{p}_t], [\mathfrak{a}] \rangle,$$

where $\mathfrak{a}^{\sigma-1} = \alpha \mathcal{O}_F$ and $N_{F/\mathbf{k}}(\alpha) \in \mathbb{F}_q^* \setminus (\mathbb{F}_q^*)^{\ell}$.

(iii) If r = 1 and ∞ splits completely, then $Cl^+(F)^G_\ell$ is generated by $[\mathfrak{p}_1]_+$, $\dots, [\mathfrak{p}_t]_+$ and $[\mathfrak{a}]_+$, where $\mathfrak{a}^{\sigma-1} = \alpha \mathcal{O}_F$ and $N_{F/k}(\alpha) \in \mathbb{F}^{*\ell}_q \setminus \mathbb{F}^{*\ell^2}_q$. In particular, if $\ell ||(q-1)$, then $Cl^+(F)^G_\ell$ is generated by $[\mathfrak{p}_1]_+, \dots, [\mathfrak{p}_t]_+$.

Proof. We only need to prove (iii). Recall that a fractional ideal \mathfrak{a} of \mathcal{O}_F is said to be ambiguous if it is invariant under the *G*-action, i.e., $\mathfrak{a}^{\sigma} = \mathfrak{a}$. Any ideal class in $\mathcal{C}l(F)^G$ or $\mathcal{C}l^+(F)^G$ is called an ambiguous ideal class. Let \mathfrak{a} be an ideal representing an ambiguous ideal class. Then $\mathfrak{a}^{\sigma-1} = \alpha \mathcal{O}_F$ with $\alpha \in F_+$. Then $N_{F/k}(\alpha) \in \mathbb{F}_q^{*\ell}$, that is, $N_{F/k}(\alpha) = \eta^{-\ell}$, and so $N_{F/k}(\alpha\eta) = 1$ for some $\eta \in \mathbb{F}_q^*$. By Hilbert Theorem 90, there exists $\beta \in F$ such that $\alpha\eta = \beta^{\sigma}/\beta$. Then, since

$$\mathfrak{a}^{\sigma-1} = (\alpha \eta) = (\beta^{\sigma}/\beta),$$

 $\beta^{-1}\mathfrak{a}$ is an ambiguous ideal. Therefore, $[\mathfrak{a}]_+ \in \langle [\mathfrak{p}_1]_+, \ldots, [\mathfrak{p}_t]_+ \rangle$ if and only if $\beta \in F_+$, which is equivalent to $\alpha \eta \in F_+$. But since $\alpha \in F_+$, this is equivalent to $\eta \in \mathbb{F}_q^{*\ell}$.

We know from $[13, \S2]$ that

$$\langle [\mathfrak{p}_1], \dots, [\mathfrak{p}_t] \rangle = I(F)^G P(F) / P(F) = I(F)^G / I(F)^G \cap P(F)$$

has ℓ -rank at least t-2. Thus $\langle [\mathfrak{p}_1]_+, \ldots, [\mathfrak{p}_t]_+ \rangle = I(F)^G P(F_+)/P(F_+) = I(F)^G/I(F)^G \cap P(F_+)$ has ℓ -rank at least t-2. It is not hard to see that the ℓ -rank of $\mathcal{C}l^+(F)^G_\ell$ is t-1, thus we get the result. \Box

Remark 2.3. In the number field case, since the size of the group of units in \mathbb{Z} is 2, there does not exist such an ideal \mathfrak{a} as in Lemma 2.2(iii).

Suppose first that r = 1. In this case $F = k(\sqrt[\ell]{D})$, where $D = aP_1^{e_1} \cdots P_t^{e_t}$ with $1 \leq e_i < \ell$ and $a \in \mathbb{F}_q^*$. We will determine a. From [1, Lemma 3.2], it is known that if $\ell \mid \deg P_i$, then $k(\sqrt[\ell]{P_i}) \subseteq k_{P_i}$, and that if $\ell \nmid \deg P_i$, then $k(\sqrt[\ell]{-P_i^{d_i}}) \subseteq k_{P_i}$, where d_i is a positive integer such that $d_i \deg P_i \equiv 1 \mod \ell$. Thus we see that a can be taken to be $(-1)^m$, where $m = \sum_{\ell \nmid \deg P_i} \nu_i$ and $d_i\nu_i \equiv e_i \mod \ell$. When $\ell \neq 2$, or $q \equiv 1 \mod 4$ and $\ell = 2$, -1 is an ℓ -th power in \mathbb{F}_q^* . Thus one may take a to be 1 in these cases. If $q \equiv 3 \mod 4$ and $\ell = 2$, then we take $a = (-1)^s$, where s is the number of odd degree P_i 's.

Proposition 2.4 ([13, Theorem 2.5]). Let $F = k(\sqrt[\ell]{D})$ be as above.

(i) $G_F^+ = k(\sqrt[\ell]{(-1)^{\deg P_1}P_1}, \dots, \sqrt[\ell]{(-1)^{\deg P_t}P_t}).$

(ii) If $\ell \nmid \deg D$ or $\ell \mid \deg P_i$ for all i, then

$$\mathbf{G}_F = \mathbf{G}_F^+ = \mathbf{k}(\sqrt[\ell]{(-1)^{\deg P_i} P_1}, \dots, \sqrt[\ell]{(-1)^{\deg P_t} P_t}).$$

(iii) If $\ell \mid \deg D$ but $\ell \nmid \deg P_i$ for $1 \le i \le s$ and $\ell \mid \deg P_j$ for $s + 1 \le j \le t$, then

$$\mathbf{G}_F = \mathbf{k}(\sqrt[\ell]{P_1 P_2^{u_2}, \dots, \sqrt[\ell]{P_1 P_s^{u_s}}}, \sqrt[\ell]{P_{s+1}, \dots, \sqrt[\ell]{P_t}}),$$

where $\deg P_1 + u_i \deg P_i \equiv 0 \mod \ell$.

Let η be a fixed primitive ℓ -th root of unity in \mathbb{F}_q . Let $(\frac{A}{P})_{\ell}$ be the ℓ -th power residue symbol. For a field F as above, we define a $t \times t$ matrix $M_F = (m_{ij})$ over \mathbb{F}_{ℓ} by, for $i \neq j$,

$$\eta^{m_{ij}} = \left(\frac{\bar{P}_i}{P_j}\right)_\ell,$$

where $\bar{P}_i = (-1)^{\deg P_i} P_i$ and m_{ii} is defined to satisfy

$$\sum_{i=1}^{t} e_i m_{ij} = 0.$$

If \mathfrak{a} is as in Lemma 2.2(ii) or (iii), let $N_{F/k}(\mathfrak{a}) = (A)$ for some $A \in \mathbb{A}$. Then m_{i0} is defined to be

$$\eta^{m_{i0}} = \left(\frac{P_i}{A}\right)_{\ell}.$$

Let $M_F := (m_{ij})$, which is a $t \times t$ or $t \times (t+1)$ matrix with entries in \mathbb{F}_{ℓ} according to the existence of \mathfrak{a} as in Lemma 2.2. Then it can be shown (cf. [13, §3]) that

$$\lambda_2(F) = \lambda_1(F) - \operatorname{rank}(M_F)$$
, when ∞ ramifies in F

and

$$\lambda_2^+(F) = \lambda_1^+(F) - \operatorname{rank}(M_F)$$
, when ∞ splits in F .

In the case (iii) of Proposition 2.4, a $(t-1) \times t$ matrix M'_F is defined in [13, §3] and it was shown that

$$\lambda_2(F) = t - 2 - \operatorname{rank}(M'_F).$$

Now suppose that r > 1. Let

$$w = \sum_{i=1}^{t} (\deg P_i, r),$$

where (a, b) denotes the greatest common divisor of a and b. A $t \times w$ matrix \tilde{M}_F over \mathbb{F}_{ℓ} is defined in [13, §4] and it is shown that

$$\lambda_2(F) = t - 1 - \operatorname{rank}(M_F).$$

Let $\mathbf{k}' = \mathbb{F}_{q^r} \cdot \mathbf{k}$ and $F' = \mathbb{F}_{q^r} \cdot F$. Let the notations be as in [13, §4]. By identifying $\operatorname{Gal}(F'/\mathbf{k}') \cong \operatorname{Gal}(F/\mathbf{k}) \cong \mathbb{F}_{\ell}$, we have

$$\Bigl(\frac{Q_i}{P_j}\Bigr)_\ell = \Bigl(\frac{Q_i, F'/\mathbf{k}'}{(P_j)}\Bigr)$$

and

$$\Bigl(\frac{Q_i,F'/\mathbf{k}'}{(P_j)}\Bigr)\Big|_F = \Bigl(\frac{P_i,F/\mathbf{k}}{(P_j)}\Bigr).$$

Thus the matrix \tilde{M}_F is essentially the same as the matrix M_3 defined in [6, §2]. We let M_F be M_3 . The product formula for norm residue symbol implies that the sum of each column of M_F is zero.

3. Asymptotic behavior of *l*-cyclic extensions with prescribed *l*-class numbers

Let F be a cyclic extension of k of degree ℓ with conductor $N = P_1 \cdots P_s$. Let H_i be the unique cyclic extension of k of degree ℓ with conductor P_i . Let $K_i = F \cdot H_i$ and $K = K_1 \cdots K_t$.

3.1. r > 1 case

In this subsection we assume that r > 1. Let

- $N_{s,n}$:= the number of ℓ -cyclic extensions F of k with $|\mathcal{C}l(F)_{\ell}| = \ell^s$ and with conductor N of degree n,
- $M_{s,n}$:= the number of ℓ -cyclic extensions F of k with $|\mathcal{C}l(F)_{\ell}| = \ell^{s-1}$ and with conductor N of degree n such that N has exactly s distinct prime factors,
- $G_{s,n}$:= the number of ℓ -cyclic extensions F of k with conductor $N = P_1 \cdots P_s$ of degree n such that P_m is an ℓ -th power residue modulo P_1, \ldots, P_{m-2} but an ℓ -th power nonresidue modulo P_{m-1} .

It can be shown, as in Theorem 1 of [4], that if F is an ℓ -cyclic extension of k satisfying the conditions to define $G_{s,n}$, then the ℓ -class group of F is an elementary abelian ℓ -group of rank s - 1. Hence $M_{s,n} \ge G_{s,n}$.

Since we know that r must divide the degrees of prime factors of N, we replace n by rn and write deg $P_i = rk_i$.

Let χ_{P_i} be a Dirichlet character of exponent ℓ of conductor P_i , that is, a character of $\text{Gal}(\mathbf{k}_{P_i}/\mathbf{k})$. For a prime $P_m \neq P_1, \ldots, P_{m-1}$, let (3.1)

$$W_m := \frac{1}{\ell^{m-1}} \Big(\sum_{j_1=0}^{\ell-1} \chi_{P_1}^{j_1}(P_m) \Big) \cdots \Big(\sum_{j_{m-2}=0}^{\ell-1} \chi_{P_{m-2}}^{j_{m-2}}(P_m) \Big) \Big(\sum_{j_{m-1}=0}^{\ell-1} \zeta_{P_{m-1}}^{j_{m-1}}(P_m) \Big),$$

where ζ is a primitive ℓ -th root of unity. Since $\sum_{k=0}^{\ell-1} \chi_{P_j}^k(P_m) = \ell$ or 0, depending on P_m is ℓ -th power residue modulo P_j or not, we have

$$M_{t,rn} \ge G_{t,rn} \ge \sum W_2 \cdots W_t,$$

where the sum is over the distinct primes P_1, \ldots, P_t with $\deg(P_1 \cdots P_t) = rn$ and $r \mid \deg P_i$. Let $y_i := 2^i \sqrt{n}$. Then $y_1 + \cdots + y_{t-1} < y_t = y$. Let

$$A_{t,rn} := \sum W_2 \cdots W_{t-1} \sum_{P_t, \deg P_t = rn - \deg P_1 - \cdots - \deg P_{t-1}} W_t,$$

where the first sum is over distinct P_i , $1 \le i \le t-1$ with deg $P_{i-1} \le \deg P_i \le y_i$ and $r \mid \deg P_i$. Then

$$(3.2) M_{t,rn} \ge G_{t,rn} \ge A_{t,rn}.$$

Write

$$W_t = \frac{1}{\ell^{t-1}} \Big(1 + \sum_J \zeta^{j_{t-1}} \chi^{j_1}_{P_1} \cdots \chi^{j_{t-1}}_{P_{t-1}}(P_t) \Big),$$

where $J = (j_1, \ldots, j_{t-1}) \neq (0, \ldots, 0)$. Then, by (1.1) and (1.5),

$$\sum_{\deg P_t = r(n-k_1 - \dots - k_{t-1})} W_t = \frac{q^{r(n-k_1 - \dots - k_{t-1})}}{\ell^{t-1}r(n-k_1 - \dots - k_{t-1})} + O\Big(\frac{q^{r(n-k_1 - \dots - k_{t-1})/2}}{n-k_1 - \dots - k_{t-1}}\Big).$$

For $k_i \leq y_i$, since $n - y = n - 2^t \sqrt{n} > n/2$ for large n,

$$\frac{q^{r(n-k_1-\dots-k_{t-1})}}{r(n-k_1-\dots-k_{t-1})} = \frac{q^{r(n-k_1-\dots-k_{t-1})}}{rn} + \frac{q^{r(n-k_1-\dots-k_{t-1})}(k_1+\dots+k_{t-1})}{rn(n-k_1-\dots-k_{t-1})} = \frac{q^{r(n-k_1-\dots-k_{t-1})}}{rn} + O\Big(\frac{(k_1+\dots+k_{t-1})q^{r(n-k_1-\dots-k_{t-1})}}{n^2}\Big)$$

and

$$\frac{q^{r(n-k_1-\cdots-k_{t-1})/2}}{(n-k_1-\cdots-k_{t-1})} = O\Big(\frac{q^{r(n-k_1-\cdots-k_{t-1})}}{n^2}\Big).$$

Thus

$$\sum_{\deg P_t = r(n-k_1-\dots-k_{t-1})} W_t = \frac{q^{r(n-k_1-\dots-k_{t-1})}}{\ell^{t-1}rn} + O\Big(\frac{(k_1+\dots+k_{t-1})q^{r(n-k_1-\dots-k_{t-1})}}{n^2}\Big).$$

From (1.7) and (1.9) we have, for $y = y_t = 2^t \sqrt{n}$,

$$\sum_{\substack{P_1,\dots,P_{t-1}\\r|\deg P_i \le ry_i}} \frac{q^{rn}(\deg P_1 + \dots + \deg P_{t-1})}{n^2 q^{\deg P_1} \dots q^{\deg P_{t-1}}} = O\left(\frac{y(\log y)^{t-2} q^{rn}}{n^2}\right) = O\left(\frac{q^{rn}}{n}\right).$$

Therefore

$$A_{t,rn} = \frac{1}{\ell^{t-1}} \sum_{P_1, \dots, P_{t-1}: \text{ distinct} \atop r | \deg P_i \le ry_i} W_2 \cdots W_{t-1} \frac{q^{nr}}{rnq^{\deg P_1} \cdots q^{\deg P_{t-1}}} + O\Big(\frac{q^{rn}}{n}\Big).$$

Now

$$W_{t-1} = \frac{1}{\ell^{t-2}} \Big(1 + \sum_{J} \zeta^{j_{t-1}} \chi^{j_1}_{P_1} \cdots \chi^{j_{t-2}}_{P_{t-2}}(P_{t-1}) \Big).$$

Let χ_Q be a nontrivial character with exponent ℓ and conductor $Q \mid P_1 \cdots P_{t-2}$. Let

$$S_Q(u) := \sum_{\deg P_{t-1}=ru} \chi_Q(P_{t-1}).$$

Then, by (1.5)

$$\sum_{t=\frac{\deg P_{t-2}}{r}}^{[y_{t-1}]} \frac{S_Q(u)}{q^{ru}} = \sum_{u=\frac{\deg P_{t-2}}{r}}^{[y_{t-1}]} O\left(\frac{1}{uq^{\frac{ru}{2}}}\right) = O(1).$$

Continuing the same process, we have

u

$$A_{t,rn} = \frac{1}{\ell^{t(t-1)/2}} \sum_{P_1,\dots,P_{t-1}} \frac{q^{rn}}{rnq^{\deg P_1} \cdots q^{\deg P_{t-1}}} + O\Big(\frac{q^{rn}}{n} (\log y)^{t-2}\Big).$$

Thus

$$A_{t,rn} = c \frac{q^{rn} (\log n)^{t-1}}{rn} + O\Big(\frac{q^{rn} (\log n)^{t-2}}{n}\Big).$$

Since $M_{s,rn} = O(p_r(rn, s))$, we have, from (1.4) and (3.2),

$$M_{s,rn} = O\left(\frac{q^{rn}}{n} (\log n)^{s-1}\right)$$

If an ℓ -extension F of k has $|\mathcal{C}l(F)_{\ell}| = \ell^s$, then at most s + 1 primes can be ramified. Now the rest of the argument to prove Theorem 1 in [5] works here and we get

Theorem 3.1.

$$N_{s,rn} = M_{s+1,rn} + O\left(\frac{M_{s+1,rn}}{\log n}\right).$$

We will compute $M_{s+1,rn}$. As in [6, §2, §3], one can see easily that the ℓ -cyclic extension F has ℓ -class number ℓ^s precisely when rank $(M_F) = s$, and that the number of distinct $(s + 1) \times (s + 1)$ matrices Γ over \mathbb{F}_{ℓ} such that rank $(\Gamma) = s$ and such that $\Gamma = M_F$ for some field F is

(3.3)
$$\ell^{\frac{s(s-1)}{2}}(\ell-1)^s \prod_{i=1}^s (\ell^i + \dots + \ell + 1).$$

Note that $\Gamma = M_F$ if and only if the sum of each column of Γ is 0 by the product formula of Hilbert symbols.

Now we consider the number $N(\Gamma)$ of F with conductor $N = P_1 \cdots P_{s+1}$ of degree rn and the corresponding matrix $M_F = \Gamma$. Let $\mathbf{k}' = \mathbb{F}_{q^r} \cdot \mathbf{k}$ and $\mathbf{L}_i = \mathbf{k}' \cdot \mathbf{H}_i$, where \mathbf{H}_i is the ℓ -cyclic extension of \mathbf{k} with conductor P_i . Then \mathbf{L}_i/\mathbf{k}' is a Kummer extension $\mathbf{L}_i = \mathbf{k}'(\sqrt[e]{\mu_i})$ for some $\mu_i \in \mathbf{k}'$. Then $\mathbf{k} \cdot F = \mathbf{k}'(\sqrt[e]{\mu})$ with $\mu = \mu_1^{e_1} \cdots \mu_{s+1}^{e_{s+1}}$. Let $\mathbf{L}'_i = \mathbf{k}'(\sqrt[e]{P_i})$. Define, for a prime P of degree divisible by $r, \lambda_i(\mathfrak{p}_i)$ and $\omega_i(\mathfrak{p}_i)$ as follows;

$$(\mathfrak{p}_j, \mathcal{L}_i/\mathbf{k}')(\sqrt[\ell]{\mu_i}) = \lambda_i(\mathfrak{p}_j)^{-1}\sqrt[\ell]{\mu_i}, \quad (\mathfrak{p}_j, \mathcal{L}_i'/\mathbf{k}')(\sqrt[\ell]{P_i}) = \omega_i(\mathfrak{p}_j)^{-1}\sqrt[\ell]{P_i},$$

where \mathfrak{p} is a prime of k' lying over P. Let $\delta_i(j,k;u,v)(P) = 1$ if $(\lambda_i(P)^j, \omega_i(P)^k) = (\zeta^u, \zeta^v)$, and 0 otherwise.

Lemma 3.2. We have, for $j = 1, ..., \ell - 1$,

(3.4)
$$\sum_{\deg P = rm} \sum_{k=1}^{\ell-1} \delta_i(j,k;u,v)(P) \sim \frac{\ell-1}{\ell^2} \frac{q^{rm}}{rm}$$

Proof. We may assume j = 1. The probability for a prime P to satisfy $(\lambda_i(P), \omega_i(P)) = (\zeta^u, \zeta^v)$ is $\frac{1}{\ell^2}$. When v = 0, then $\omega_i(P)^k = 1 = \zeta^0$ for any $k = 1, \ldots, \ell - 1$. Hence the probability for a prime P to satisfy $(\lambda_i(P), \omega_i(P)^k) = (\zeta^u, \zeta^0)$ for some $k = 1, \ldots, \ell - 1$ is $\frac{\ell - 1}{\ell^2}$. When $v \neq 0$, then, for $\omega_i(P) \neq 1$, there exists a unique $k = 1, \ldots, \ell - 1$ such that $\omega_i(P)^k = \zeta^v$. Thus the probability for a prime P to satisfy $(\lambda_i(P), \omega_i(P)^k) = (\zeta^u, \zeta^v)$ for some $k = 1, \ldots, \ell - 1$ is again $\frac{\ell - 1}{\ell^2}$. Then the result follows from the equation (1.1).

Note the difference of (3.4) from the formula in [6, p. 200]. In the classical case the condition $p \equiv 1 \mod \ell$ is imposed instead of the condition that deg P_i is divisible by r, and the probability for a prime to satisfy $p \equiv 1 \mod \ell$ is $\frac{1}{\ell-1}$ by Dirichlet theorem on arithmetic progression. We repeat the process to get

(3.5)
$$\sum_{\deg P_w = rm} \sum_{k=1}^{\ell-1} \prod_{i=1}^{w-1} \delta_i(j,k;u,v)(P_w) \sim \frac{\ell-1}{\ell^{2(w-1)}} \frac{q^{rm}}{rm}.$$

Theorem 3.3. We have, for $(s + 1) \times (s + 1)$ matrix Γ such that the sum of each column is 0,

$$N(\Gamma) \sim \frac{(\ell - 1)^s}{s! r^{s+1} \ell^{s^2 + s}} \frac{q^{rn} (\log n)^s}{n},$$

and so

$$N_{s,rn} \sim \frac{(\ell-1)^{2s} \prod_{i=1}^{s} (\ell^{i} + \dots + \ell + 1)}{s! r^{s+1} \ell^{(s^{2}+3s)/2}} \frac{q^{rn} (\log n)^{s}}{n}.$$

Proof. (Sketch of proof) As in $\S4$ of [6], we have

$$N(\Gamma) = \frac{1}{(s+1)!} \sum_{m_1 + \dots + m_{s+1} = n} \sum_{\deg P_1 = rm_1} \sum_{\deg P_2 = rm_2} Y_2 \cdots \sum_{\deg P_s = rm_s} Y_s \sum_{\deg P_{s+1} = rm_{s+1}} Y_{s+1},$$

where

$$Y_w = \sum_{k=1}^{\ell-1} \prod_{i=1}^{w-1} \delta_i(j,k;u,v)(P_w)$$

for $w = 2, \ldots, s + 1$. Then using the equation (3.5), we have

$$N(\Gamma) \sim \frac{1}{(s+1)!} \frac{(\ell-1)^s}{\ell^{s^2+s}} \frac{q^{rn}}{r^{s+1}} \sum_{m_1+\dots+m_{s+1}=n} \frac{1}{m_1 \dots m_{s+1}}$$
$$\sim \frac{(\ell-1)^s}{s! r^{s+1} \ell^{s^2+s}} \frac{q^{rn} (\log n)^s}{n},$$

by the equation (1.12).

Remark 3.4. (1) One can do the error estimate as in [6] using (1.5) to get the error term $o(\frac{q^{rn}(\log n)^s}{n})$. But it is not necessary for our purpose.

(2) In the proof of [6, Lemma 3], also in our proof here, the condition that Γ has rank s is not necessary to get the estimate $N(\Gamma)$. Thus the asymptotic formula for $N(\Gamma)$ works for any Γ such that the sum of each column is 0. This will be used in the computation in §4.

3.2. r = 1 case

Now we assume that r = 1, that is $\ell | q - 1$. We consider ℓ -cyclic extensions F of k with conductor N of degree n and with $|\mathcal{C}l(F)_{\ell}| = \ell^s$. We have two cases. One is real, that is, ∞ splits completely. The other is imaginary, that is, ∞ ramifies. The case that ∞ is inert cannot happen, since we have assumed that the field is contained in some cyclotomic function field. Let

- $N_{I,s,n}$:= the number of imaginary ℓ -cyclic extensions F of k with conductor N of degree n and $|\mathcal{C}l(F)_{\ell}| = \ell^s$,
- $N_{R,s,n}$:= the number of real ℓ -cyclic extensions F of k with conductor N of degree n and $|\mathcal{C}l(F)_{\ell}| = \ell^s$,
- $M_{I,t,n}$:= the number of imaginary ℓ -cyclic extensions F of k with conductor N of degree n such that N has exactly t distinct prime factors and $|\mathcal{C}l(F)_{\ell}| = \ell^{t-1}$,
- $M_{R,t,n}$:= the number of real ℓ -cyclic extensions F of k with conductor N of degree n such that N has exactly t distinct prime factors and $|\mathcal{C}l(F)_{\ell}| = \ell^{t-2}$.
- For $\ell | n, M'_{t,n} :=$ the number of ℓ -cyclic extensions F of conductor N of degree n, such that N has exactly t prime factors, all having degrees divisible by ℓ and $|\mathcal{C}l(F)_{\ell}| = \ell^{t-1}$.

In this case $F = k(\sqrt[\ell]{D})$ with $D = \alpha P_1^{e_1} \cdots P_t^{e_t}$, $1 \leq e_i \leq l-1$. We may assume that $e_1 = 1$. Here $\alpha \in \mathbb{F}_q^*$ is chosen so that $F \subseteq k_N$, where $N = P_1 \cdots P_t$. If ℓ divides deg D, then it is real. If ℓ does not divide deg D, then it is imaginary. If $\ell = 2$, then $(e_1, \ldots, e_t) = (1, \ldots, 1)$. In this case whether F is real or imaginary depends only on the parity of deg N. One can follow almost the same process to prove Theorem 3.1 as in the case r > 1 to get

$$N_{I,s,n} = M_{I,s+1,n} + O\left(\frac{M_{I,s+1,n}}{\log n}\right),$$

and

$$N_{R,s,n} = \begin{cases} M_{R,s+2,n} + O(\frac{M_{R,s+2,n}}{\log n}) & \text{for } \ell \nmid n, \\ M_{R,s+2,n} + M'_{s+1,n} + O(\frac{M_{R,s+2,n}}{\log n}) + O(\frac{M'_{s+1,n}}{\log n}) & \text{for } \ell | n. \end{cases}$$

But one can show as in the case r > 1 that $M_{R,s+2,n} \sim c \frac{q^n (\log n)^{s+1}}{n}$ for some c > 0 and $M'_{s+1,n} = O(\frac{q^n (\log n)^s}{n})$. Therefore,

$$N_{R,s,n} = M_{R,s+2,n} + O\left(\frac{M_{R,s+2,n}}{\log n}\right)$$

Some calculation concerning this will be carried out in §4.2, where we replace Cl(F) by $Cl^+(F)$.

Remark 3.5. From the equations (1.2) and (1.3), it is very likely that $M'_{s+1,n} = o(M_{R,s+2,n})$.

4. Density for ℓ -ranks of ℓ -cyclic function fields

4.1. r > 1 case

In this subsection we assume r > 1, that is $\ell \nmid q - 1$. Let \mathbf{A}_t be the set of all ℓ -cyclic extensions F of k such that t finite primes ramify in F/k, and

$$\mathbf{A}_{t;n} := \{F \in \mathbf{A}_t \mid \deg(cond(F)) = n\}$$
$$\mathbf{A}_{t,e} := \{F \in \mathbf{A}_t \mid \lambda_2(F) = e\},$$
$$\mathbf{A}_{t,e;n} := \mathbf{A}_{t,e} \cap \mathbf{A}_{t;n},$$

where cond(F) denotes the conductor of F. We define the density $d_{t,e}$ by

$$d_{t,e} := \lim_{n \to \infty} \frac{|\mathbf{A}_{t,e;rn}|}{|\mathbf{A}_{t;rn}|}.$$

Note that $\mathbf{A}_{t,0;n} = M_{t,n}$ in §3.1. For any monic irreducible polynomials P_1, \ldots, P_t with $r | \deg P_i$, there are $(\ell - 1)^{t-1}$ distinct fields F in \mathbf{A}_t with conductor $N = P_1 \cdots P_t$. So by (1.3), we have

(4.1)
$$|\mathbf{A}_{t;rn}| = (\ell - 1)^{t-1} \sum_{\substack{\deg(P_1 \cdots P_t) = rn \\ r \mid \deg P_i}} 1 \sim \frac{(\ell - 1)^{t-1}}{(t-1)!r^t} \frac{q^{rn} (\log n)^{t-1}}{n}.$$

Let M_F be the $t \times t$ matrix over \mathbb{F}_{ℓ} associated to F as in §2. Following the arguments in [6, §2, §3], we see that $\lambda_2(F) = t - 1 - \operatorname{rank}(M_F)$. Then $|\mathbf{A}_{t,e;rn}|$ can be estimated as

(4.2)
$$|\mathbf{A}_{t,e;rn}| \sim \sum_{\substack{\Gamma\\ \operatorname{rank}(\Gamma)=t-1-e}} \sum_{\substack{\deg(P_1\cdots P_t)=rn\\r|\deg P_i}} \sum_{cond(F)=P_1\cdots P_t} \delta_{\Gamma,F},$$

where $\delta_{\Gamma,F} = 1$ if $M_F = \Gamma$ and $\delta_{\Gamma,F} = 0$ otherwise. It is shown in Theorem 3.3 that, for $t \times t$ matrix Γ such that the sum of each column is 0, (4.3)

$$N(\Gamma) = \sum_{\substack{\deg(P_1 \cdots P_t) = rn \\ r \mid \deg P_i}} \sum_{\substack{F \\ cond(F) = P_1 \cdots P_t}} \delta_{\Gamma,F} \sim \frac{(\ell-1)^{t-1}}{(t-1)! r^t \ell^{t(t-1)}} \frac{q^{rn} (\log n)^{t-1}}{n}.$$

It is known ([7, Proposition 2.1]) that the number N(t, t-1-e) of $t \times t$ matrices Γ , where the sum of each column is 0, over \mathbb{F}_{ℓ} with rank t-1-e is

(4.4)
$$N(t,t-1-e) = \left[\prod_{j=1}^{t-1-e} (\ell^t - \ell^{j-1})\right] \sum_{\substack{k_1 + \dots + k_{t-1-e} \le e \\ each \ k_i \ge 0}} \left(\prod_{s=1}^{t-1-e} \ell^{sk_s}\right)$$

So we have, from (4.2), (4.3) and (4.4),

$$|\mathbf{A}_{t,e;rn}| \sim \frac{(\ell-1)^{t-1}}{(t-1)!r^t \ell^{t(t-1)}} \frac{q^{rn} (\log n)^{t-1}}{n} \left[\prod_{j=1}^{t-1-e} (\ell^t - \ell^{j-1}) \right] \sum_{\substack{k_1 + \dots + k_{t-1-e} \leq e \\ each \ k_i \geq 0}} \left(\prod_{s=1}^{t-1-e} \ell^{sk_s} \right).$$

Thus

$$d_{t,e} = \frac{1}{\ell^{te}} \left[\prod_{j=1}^{t-1-e} \left(1 - \frac{1}{\ell^{t+1-j}} \right) \right] \sum_{\substack{k_1 + \dots + k_{t-1-e} \le e \\ \text{each } k_i \ge 0}} \left(\prod_{s=1}^{t-1-e} \ell^{sk_s} \right)$$

for $1 \le e \le t-1$ and $d_{t,t-1} = \ell^{-t(t-1)}$. Let

$$d_{\infty,e} := \lim_{t \to \infty} d_{t,e}.$$

Then we follow almost the same argument as in $[10, \S3]$ to get

$$d_{\infty,e} = \frac{\ell^{-e(e+1)} \prod_{k=1}^{\infty} (1-\ell^{-k})}{\prod_{k=1}^{e} (1-\ell^{-k}) \prod_{k=1}^{e+1} (1-\ell^{-k})} \quad \text{for } e = 0, 1, 2, \dots$$

4.2. r = 1 case

Let \mathbf{A}_t be the set of all $\ell\text{-cyclic extensions }F$ such that t finite primes ramify in $F/\mathbf{k},$ and

$$\begin{aligned} \mathbf{A}_{t;n} &:= \{ F \in \mathbf{A}_t \mid \deg(cond(F)) = n \}, \\ \mathbf{A}_{t,e} &:= \{ F \in \mathbf{A}_t \mid \lambda_2(F)^+ = e \}, \\ \mathbf{A}_{t,e;n} &:= \mathbf{A}_{t,e} \cap \mathbf{A}_{t;n}, \end{aligned}$$

where cond(F) denotes the conductor of F. We define the density $d_{t,e}$ by

$$d_{t,e} := \lim_{n \to \infty} \frac{|\mathbf{A}_{t,e;n}|}{|\mathbf{A}_{t;n}|}.$$

For each $N \in P(n, t)$ and $\mathbf{e} := (1, e_1, \dots, e_t)$ with $1 \le e_i < \ell$, let

$$N^{\mathbf{e}} := P_1^{e_1} P_2^{e_2} \cdots P_t^{e_t}.$$

Then any field in $\mathbf{A}_{t;n}$ is of the form

$$F_{N,\mathbf{e}} := \mathrm{k} \left(\sqrt[\ell]{(-1)^{\deg N^{\mathbf{e}}} N^{\mathbf{e}}} \right).$$

Thus $|\mathbf{A}_{t;n}| = (\ell - 1)^{t-1} p(n, t)$. Note that if $F_{N,\mathbf{e}} \in \mathbf{A}_{t,e;n}$ for some \mathbf{e} , then so in $F_{N,\mathbf{e}'}$ for any \mathbf{e}' .

From now on we assume that $\ell || (q-1)$. The general case is very hard to compute the rank of M_F because of ambiguous ideal class without containing ambiguous ideal. Consider first the case that ℓ is odd, so that a = 1 (See §2). It is shown in [13] that $M_F = (m_{ij})$ is given by: $m_{ij} = \left(\frac{P_i}{P_j}\right)_{\ell}$, for $i \neq j$, where $(-)_{\ell}$ is the ℓ -th power residue, and m_{jj} is defined by the relation $\sum_i e_i m_{ij} = 0$. Then, since $\frac{q-1}{\ell}$ is even or characteristic is 2, from the ℓ -th power reciprocity ([12, Theorem 3.3]), M_F is symmetric. There is an algorithm to determine the number of $s \times s$ symmetric matrices with rank r over \mathbb{F}_{ℓ} from the following proposition.

Proposition 4.1. Let M be a symmetric $u \times u$ matrix of rank r over \mathbb{F}_{ℓ} . Let

$$M_1 = \begin{pmatrix} M & V \\ V^T & v \end{pmatrix},$$

with $V \in \mathbb{F}_{\ell}^{u}$, $v \in \mathbb{F}_{\ell}$. Then among all possible M_{1} ,

- (i) ℓ^r of them have rank r.
- (ii) $\ell^r(\ell-1)$ of them have rank r+1.
- (iii) $\ell^{u+1} \ell^{r+1}$ of them have rank r+2.

Suppose that we have given a total order '<' on the set of monic irreducible polynomials in A. For $N, N' \in P(n, t)$, we say that N and N' are equivalent if $\left(\frac{P_i}{P_i}\right)_{\ell} = \left(\frac{P'_i}{P'_i}\right)_{\ell}$, where $N = P_1 \cdots P_t$, $P_1 < \cdots < P_t$ and $N' = P'_1 \cdots P'_t$, $P'_1 < \cdots < P'_t$. Let $\mathcal{N}(N)$ be the set of polynomials in P(n, t), which are equivalent to N. Then it can be shown that (similar to §3.1)

$$|\mathcal{N}(N)| \sim \ell^{-\frac{t^2 - t}{2}} \frac{q^n (\log n)^{t-1}}{(t-1)!n} \sim \ell^{-\frac{t^2 - t}{2}} p(n, t).$$

Note that we have $\ell^{-\frac{t^2-t}{2}}$ instead of $\ell^{-\frac{t^2+t}{2}}$ because we don't have any condition on deg P_i , different from the classical case (formula (2.12) of [8]), where the condition $p_i \equiv p'_i \mod 4$ is imposed.

Let $\tilde{N}(t-1, u)$ be the number of $(t-1) \times (t-1)$ symmetric matrices with rank u. Then one can show as in §2 of [8] that

$$|\mathbf{A}_{t,e;n}| = (\ell - 1)^{t-1} \tilde{N}(t-1, t-1-e) |\mathcal{N}(N)|.$$

Then

$$d_{t,e;n} := \frac{|\mathbf{A}_{t,e;n}|}{|\mathbf{A}_{t;n}|} \sim \ell^{-\frac{t^2-t}{2}} \tilde{N}(t-1,t-1-e),$$

which is just the density g(t, e) of $(t-1) \times (t-1)$ symmetric matrices with rank t-1-e in the set of $(t-1) \times (t-1)$ symmetric matrices. We will compute the limit $\lim_{t\to\infty} g(t, e)$. From Proposition 4.1, we see that

$$g(t+1,e) = \frac{1}{\ell^e}g(t,e-1) + \frac{\ell-1}{\ell^{1+e}}g(t,e) + \frac{\ell^{1+e}-1}{\ell^{1+e}}g(t,e+1), \text{ if } e > 0$$

and

$$g(t+1,0) = \frac{\ell-1}{\ell}g(t,0) + \frac{\ell-1}{\ell}g(t,1).$$

Let $G(t) = (g(t,0), g(t,1), \dots, g(t,i), \dots)$. One can show by induction that G(t) converges to, as $t \to \infty$,

$$G = \alpha \Big(1, \frac{1}{\ell - 1}, \dots, \frac{1}{\prod_{i=1}^{k} (\ell^{i} - 1)}, \dots \Big),$$

where

$$\alpha^{-1} = 1 + \frac{1}{\ell - 1} + \frac{1}{(\ell - 1)(\ell^2 - 1)} + \cdots$$

Now assume that $q \equiv 3 \mod 4$ and $\ell = 2$. Now the rest is almost the same as the classical case replacing ' $p \equiv 1 \mod 4$ ' (resp. $p \equiv 3 \mod 4$) by 'deg Pis even' (resp. odd). The reason for this is that the quadratic reciprocity for function field in this case is $\left(\frac{P_i}{P_j}\right)\left(\frac{P_j}{P_i}\right) = (-1)^{\deg P_i \deg P_j}$ in contrast with $\left(\frac{p_i}{p_j}\right)\left(\frac{p_j}{p_i}\right) = (-1)^{\frac{p_i-1}{2}\frac{P_j-1}{2}}$ in the classical case. Then following the same ideas to get Proposition 2.1 and Proposition 5.1 of [8], we get

$$|\mathbf{A}_{t,e;n}| \sim \sum_{\substack{1 \le d \le t \\ d \text{ odd}}} N(t-1, d-1, t-1-e) \binom{t}{d} 2^{-\frac{t^2+t}{2}} \frac{q^n (\log n)^{t-1}}{(t-1)!n} \quad \text{for } n \text{ odd},$$

$$|\mathbf{A}_{t,e;n}| \sim \sum_{\substack{1 \le d \le t \\ d \text{ even}}} N(t-1, d-1, t-1-e) \binom{t}{d} 2^{-\frac{t^2+t}{2}} \frac{q^n (\log n)^{t-1}}{(t-1)!n} \quad \text{for } n \text{ even},$$

and

$$d_{t,e;n} \sim \sum_{\substack{1 \le d \le t \\ d \text{ odd}}} N(t-1, d-1, t-1-e) \binom{t}{d} 2^{-\frac{t^2+t}{2}} \quad \text{for } n \text{ odd,}$$
$$d_{t,e;n} \sim \sum_{\substack{1 \le d \le t \\ d \text{ even}}} N'(t-1, d-1, t-1-e) \binom{t}{d} 2^{-\frac{t^2+t}{2}} \quad \text{for } n \text{ even,}$$

where N(s, d, r) is the number of $s \times s$ matrices $M = (m_{ij})$ over \mathbb{F}_2 with $m_{ij} \neq m_{ji}$ for $1 \leq i < j \leq d$ and with $m_{ij} = m_{ji}$ for $d + 1 \leq i \leq s$ and $1 \leq j \leq s$ such that rank(M) = r, and N'(s, d, r) is the number of $s \times (s + 1)$ matrices $\overline{M'}$ whose first column is the transpose of the vector $(1, \ldots, 1, 0, \ldots, 0)$ with first d entries 1 and the rest part is an $s \times s$ matrix $M' = (m'_{ij})$ over \mathbb{F}_2 with $m'_{ij} \neq m'_{ji}$ for $1 \leq i < j \leq d$ and $m'_{ij} = m'_{ji}$ for $d + 1 \leq i \leq s$ and $1 \leq j \leq s$ such that rank $(\overline{M'}) = r$. Then as in [8, §4, §5],

$$G(t) := (d_{t,0,2n+1}, d_{t,1,2n+1}, \ldots)$$
 and $G'(t) := (d'_{t,0,2n}, d'_{t,1,2n}, \ldots)$

converge to $\frac{Y}{2}$ and $\frac{Y'}{2}$ as $t \to \infty$, where

$$Y = \left[\prod_{m=1}^{\infty} (1-2^{-m})\right]^{-1} \left(1, 2, \dots, 2^{-i^2} \prod_{m=1}^{i} (1-2^{-m})^{-2}, \dots\right)$$

and

$$Y' = \left[\prod_{m=2}^{\infty} (1-2^{-m})\right] \left(1, 2/3, \dots, 2^{-i(i+1)} \prod_{m=1}^{i} (1-2^{-m})^{-1} (1-2^{-m-1})^{-1}, \dots\right).$$

5. Generalization to ℓ^m -cyclic function fields

In this section we consider ℓ^m -cyclic extensions F of k and the following question as in [9]: how likely is $\lambda_2^+(F) = 0, \lambda_2^+(F) = 1, \lambda_2^+(F) = 2, \ldots$? When m = 1, its answer is already obtained in §4. So we assume $m \ge 2$. Assume that we are given integers m_1, \ldots, m_t such that $m = m_1 \ge m_2 \ge \cdots \ge m_t \ge 1$. Let Δ be the abelian group of type $(\ell^{m_2}, \ldots, \ell^{m_t})$ (When t = 1, we let Δ be the trivial group).

Write $\mathbf{A}(\Delta)$ for the set of all F as above such that the narrow genus group $\mathcal{C}l^+(F)_{\ell}/\mathcal{C}l^+(F)_{\ell}^{1-\sigma}$ is isomorphic to Δ , and

(5.1)
$$\mathbf{A}(\Delta)_n := \{ F \in \mathbf{A}(\Delta) : \deg(cond(F)) = n \},\$$

(5.2)
$$\mathbf{A}_e(\Delta) := \{ F \in \mathbf{A}(\Delta) : \lambda_2^+(F) = e \},\$$

(5.3) $\mathbf{A}_e(\Delta)_n := \mathbf{A}_e(\Delta) \cap \mathbf{A}(\Delta)_n.$

Then we define the density $d_e(\Delta)$ of $\mathbf{A}_e(\Delta)$ in $\mathbf{A}(\Delta)$ by

(5.4)
$$d_e(\Delta) := \lim_{n \to \infty} \frac{|\mathbf{A}_e(\Delta)_{rn}|}{|\mathbf{A}(\Delta)_{rn}|}.$$

It is easy to see that for any ordering (m_{j_i}) of m_1, \ldots, m_t and monic irreducible polynomials P_1, \ldots, P_t with $q^{\deg P_i} \equiv 1 \mod \ell^{m_{j_i}}$, there are

$$\frac{\prod_{i=1}^{t} (\ell^{m_{j_i}} - \ell^{m_{j_i}-1})}{(\ell^m - \ell^{m-1})} = \prod_{i=2}^{t} (\ell^{m_i} - \ell^{m_i-1})$$

distinct fields F in $\mathbf{A}(\Delta)$ such that the conductor of F is $P_1 \cdots P_t$ and each P_i has ramification index $\ell^{m_{j_i}}$ in F. So we have

(5.5)
$$|\mathbf{A}(\Delta)_{rn}| \sim \left[\prod_{i=2}^{t} (\ell^{m_i} - \ell^{m_i-1})\right] \left(\sum_{(m_{j_i})} \sum_{\substack{\deg(P_1 \cdots P_t) = rn \\ q^{\deg P_i \equiv 1 \mod \ell^{m_{j_i}}}} 1\right),$$

where $\sum_{(m_{j_i})}$ denotes a sum over all distinguishable orderings of m_1, \ldots, m_t , and $\sum^{(m_{j_i})}$ is a sum for a fixed reordering (m_{j_i}) . For any positive integer k, write r_k for the smallest positive integer such that $\ell^k | q^{r_k} - 1$. Then for any monic irreducible polynomial P in \mathbb{A} , we have $q^{\deg P} \equiv 1 \mod \ell^k$ if and only if $r_k | \deg P$. Following the method of [11, §9], we have

(5.6)
$$\sum_{\substack{\deg(P_1\cdots P_t)=rn\\q^{\deg P_i}\equiv 1 \mod \ell^{m_{j_i}}}}^{(m_{j_i})} 1 = \sum_{\substack{\deg(P_1\cdots P_t)=rn\\r_{m_{j_i}}| \deg P_i}}^{(m_{j_i})} 1 \sim \frac{q^{rn}(\log n)^{t-1}}{(t-1)!(r_{m_1}\cdots r_{m_t})n}.$$

Let $v_w = |\{m_i : m_i = w\}|$ for $1 \le w \le m$. Since there are $\frac{t!}{(v_1!)\cdots(v_m!)}$ distinguishable orderings (m_{j_i}) of m_1, \ldots, m_t , by (5.5) and (5.6), we have

(5.7)
$$|\mathbf{A}(\Delta)_{rn}| \sim \frac{t \prod_{i=2}^{t} (\ell^{m_i} - \ell^{m_i-1})}{(r_{m_1} \cdots r_{m_t})(v_1!) \cdots (v_m!)} \frac{q^{rn} (\log n)^{t-1}}{n}.$$

Now we are going to obtain an asymptotic formula for $\mathbf{A}_e(\Delta)_{rn}$. Assume first that r > 1, that is $\ell \nmid q-1$. Following the arguments in [3, §5, Theorem 5.3], one can associate a $t \times (t-1)$ matrix \bar{M}'_F to F such that $\lambda_2^+(F) = t-1-\operatorname{rank}(\bar{M}'_F)$. Moreover, as in [9, §2], one can replace the matrix \bar{M}'_F with a $t \times t$ matrix \bar{M}_F such that $\operatorname{rank}(\bar{M}'_F) = \operatorname{rank}(\bar{M}_F)$. Especially, if $F \in \mathbf{A}_e(\Delta)$, then the matrix \bar{M}_F has rank t-1-e. Then $|A_e(\Delta)_{rn}|$ can be estimated as

(5.8)
$$|\mathbf{A}_{e}(\Delta)_{rn}| \sim \sum_{\Gamma \atop \operatorname{rank}(\Gamma)=t-1-e} \sum_{(m_{j_{i}})} \sum_{\substack{\operatorname{deg}(P_{1}\cdots P_{t})=rn \\ r_{m_{j_{i}}} \mid \operatorname{deg} P_{i}}} \sum_{cond(F)=P_{1}\cdots P_{t}} \delta_{\Gamma},$$

where the first sum is over all $t \times t$ matrices Γ over \mathbb{F}_{ℓ} with rank t - 1 - e. The fourth sum runs over all $F \in \mathbf{A}(\Delta)$ with conductor $P_1 \cdots P_t$ such that each P_i has ramification index $\ell^{m_{j_i}}$, and $\delta_{\Gamma} = 1$ if $\overline{M}_F = \Gamma$ and $\delta_{\Gamma} = 0$ otherwise. If the ordering (m_{j_i}) has $m_{j_i} = m_i$ for $1 \leq i \leq t$, then \overline{M}_F has the following form:

(5.9)
$$M_F = \begin{pmatrix} M_1 & M_2 \\ O & D \end{pmatrix}$$

where M_1 is a $v_m \times v_m$ matrix over \mathbb{F}_{ℓ} in which the sum of entries in each row is zero, M_2 is a $v_m \times (t - v_m)$ matrix over \mathbb{F}_{ℓ} , O is the $(t - v_m) \times v_m$ zero matrix and D is a $(t - v_m) \times (t - v_m)$ diagonal matrix.

Let Γ be a $t \times t$ matrix over \mathbb{F}_{ℓ} such that Γ has the same form as the matrix on the right hand side of (5.9), and let

$$N(\Gamma) = \sum_{\substack{\deg(P_1 \cdots P_t) = rn \\ r_{m_i} \mid \deg P_i}} \sum_{\substack{F \\ cond(F) = P_1 \cdots P_t}} \delta_{\Gamma},$$

where $\delta_{\Gamma} = 1$ if $\overline{M}_F = \Gamma$ and $\delta_{\Gamma} = 0$ otherwise. Following the idea of [9, §2] and adopting the similar method as in §3.1, we get:

Proposition 5.1. We have

$$N(\Gamma) \sim \frac{\prod_{i=2}^{t} (\ell^{m_i} - \ell^{m_i-1})}{(r_{m_1} \cdots r_{m_t}) \ell^{v_m(t-1)+t-v_m}} \frac{q^{rn} (\log n)^{t-1}}{(t-1)!n},$$

and so

$$|\mathbf{A}_{e}(\Delta)_{rn}| \sim \frac{tN(t, v_{m}, t-1-e)(\ell^{m}-\ell^{m-1})^{v_{m}-1}\prod_{i=v_{m}+1}^{t}(\ell^{m_{i}}-\ell^{m_{i}-1})}{(r_{m_{1}}\cdots r_{m_{t}})(v_{1}!)\cdots (v_{m}!)\ell^{v_{m}(t-1)+t-v_{m}}} \times \frac{q^{rn}(\log n)^{t-1}}{n},$$
(5.10)

where $N(t, v_m, t - 1 - e)$ denote the number of Γ 's as above with rank $(\Gamma) = t - 1 - e$.

Finally, by (5.7) and (5.10), we have

(5.11)
$$d_e(\Delta) = \frac{N(t, v_m, t-1-e)}{\ell^{v_m(t-1)+t-v_m}} \quad \text{for } 0 \le e \le t-1.$$

We note that the number $N(t, v_m, t-1-e)$ can be computed as in Lemma 2.4 and the remark following it in [9].

Now suppose that r = 1. As before we only consider the case $\ell ||(q-1)$. Let \mathbf{B}_t be the set of all ℓ^m -cyclic extensions F of k such that t finite primes ramify in F/k, and

(5.12)
$$\mathbf{B}_{t;n} := \{F \in \mathbf{B}_t : \deg(cond(F)) = n\},\$$

(5.13)
$$\mathbf{B}_{t,e} := \{ F \in \mathbf{B}_t : \lambda_2^+(F) = e \},\$$

$$(5.14) \mathbf{B}_{t,e;n} := \mathbf{B}_{t,e} \cap \mathbf{B}_{t;n}.$$

Then as in [9] we see that the density $d_{t,e} := \lim_{n \to \infty} \frac{|\mathbf{B}_{t,e;rn}|}{|\mathbf{B}_{t;rn}|}$ is given by

(5.15)
$$d_{t,e} = \frac{\sum_{u=1}^{t} \frac{N(t,u,t-1-e)}{\ell^{u(t-1)+t-u}} {t \choose u} \frac{(m-1)^{t-u}}{m^{t}}}{1 - (\frac{m-1}{m})^{t}}$$

and its limit $d_{\infty,e} := \lim_{t \to \infty} d_{t,e} = 0.$

The formula (5.7) also works in this case too. As in the case of r > 1, we get the matrix M_F in (5.9). But in this case we need one more step, that is, multiply z_i , which is defined as in (2.12) of [9], to each *i*th row of M_F with $1 \le i \le v_m$. The resulting matrix M_F^* has the same rank as M_F and is of the form

(5.16)
$$M_F^* = \begin{pmatrix} M_1^* & M_2^* \\ O & D \end{pmatrix}$$

where M_1^* is a $v_m \times v_m$ symmetric matrix over \mathbb{F}_{ℓ} in which the sum of entries in a row is 0 and M_2^* , O, D are the same as before. When $\ell = 2$ as in the classical case, we do not need this step, since $z_i = 1$ in this case. The reason for the symmetricity of M_1^* follows from the ℓ th power reciprocity law ([12], Theorem 3.3) for $\ell > 2$, and from the fact that m > 1 for $\ell = 2$. Exactly the same way as in the case r > 1, we obtain

(5.17)
$$|\mathbf{A}_{e}(\Delta)_{n}| \sim \frac{N_{s}(t, v_{m}, t-1-e) \prod_{i=2}^{t} (\ell^{m_{i}} - \ell^{m_{i}-1})}{(r_{m_{1}} \cdots r_{m_{t}}) v_{1}! \cdots v_{m}! \ell^{\frac{v_{m}(v_{m}-1)}{2} + v_{m}(t-v_{m})}} \frac{tq^{n} (\log n)^{t-1}}{n},$$

where $N_s(t, u, s)$ denotes the number of matrices Γ of the form specified in (5.16) such that rank $\Gamma = s$. The density $d_e(\Delta)$ and $d_{t,e}$ are given by

(5.18)
$$d_e(\Delta) = \frac{N_s(t, v_m, t-1-e)}{\ell^{\frac{v_m(v_m-1)}{2} + v_m(t-v_m)}},$$

and

(5.19)
$$d_{t,e} = \left[\sum_{u=1}^{t} \frac{N_s(t, u, t-1-e)}{\ell^{\frac{u(u-1)}{2}} + u(t-u)} \binom{t}{u} \frac{(m-1)^{t-u}}{m^t} \right] \left(1 - \left(\frac{m-1}{m}\right)^t \right)^{-1}.$$

References

- B. Angles, On Hilbert class field towers of global function fields, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996), 261–271, World Sci. Publ., River Edge, NJ, 1997.
- [2] S. Bae and J. Koo, Genus theory for function fields, J. Austral. Math. Soc. Ser. A 60 (1996), no. 3, 301–310.
- [3] A. Fröhlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, American Mathematical Society, Providence, RI, 1983.
- [4] F. Gerth, Number fields with prescribed l-class groups, Proc. Amer. Math. Soc. 49 (1975), 284-288.
- [5] _____, Asymptotic behavior of number fields with prescribed *l*-class numbers, J. Number Theory 17 (1983), no. 2, 191–203.
- [6] _____, Counting certain number fields with prescribed *l*-class numbers, J. Reine Angew. Math. **337** (1982), 195–207.
- [7] _____, An application of matrices over finite fields to algebraic number theory, Math. Comp. **41** (1983), no. 163, 229–234.
- [8] _____, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), no. 3, 489–515.
- [9] _____, Densities for certain l-ranks in cyclic fields of degree lⁿ, Compositio Math. 60 (1986), no. 3, 295–322.
- [10] _____, Densities for ranks of certain parts of p-class groups, Proc. Amer. Math. Soc. 99 (1987), no. 1, 1–8.
- [11] J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields, Marcel Decker Inc., New York-Basel, 1979.
- [12] M. Rosen, Number Theory in Function Fields, GTM vol. 210, Springer, 2002.
- [13] C. Wittmann, *l*-Class groups of cyclic function fields of degree *l*, Finite Fields Appl. 13 (2007), no. 2, 327–347.

SUNGHAN BAE DEPARTMENT OF MATHEMATICS KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY DAEJEON 305-701, KOREA *E-mail address:* shbae@kaist.ac.kr

HWANYUP JUNG DEPARTMENT OF MATHEMATICS EDUCATION CHUNGBUK NATIONAL UNIVERSITY CHEONGJU 361-763, KOREA *E-mail address*: hyjung@chungbuk.ac.kr