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ℓ-RANKS OF CLASS GROUPS OF FUNCTION FIELDS

Sunghan Bae and Hwanyup Jung

Abstract. In this paper we give asymptotic formulas for the number
of ℓ-cyclic extensions of the rational function field k = Fq(T ) with pre-

scribed ℓ-class numbers inside some cyclotomic function fields, and den-
sity results for ℓ-cyclic extensions of k with certain properties on the ideal
class groups.

0. Introduction

Let Q be the field of rational numbers and ℓ be a prime number. In the 1980s
F. Gerth studied extensively the asymptotic behavior of ℓ-cyclic extensions of
Q with certain conditions on the ideal class groups and ramified primes. Let
us recall Gerth’s results more precisely. Write Ns,x for the number of ℓ-cyclic
extensions of Q with conductor ≤ x and ℓ-class number ℓs. In [5], it is shown
that to obtain an asymptotic formula for Ns,x, it suffices to count the number
Ms+1,x of ℓ-cyclic extensions of Q whose conductor is ≤ x and divisible by
exactly s+ 1 distinct primes, and whose ℓ-class number is ℓs. In [6], a matrix
M over Fℓ is associated to each ℓ-cyclic extension F of Q with s + 1 ramified
primes such that the ℓ-class number of F is ℓs precisely when rank(M) = s, and
an asymptotic formula for Ns,x is given by studying the asymptotic behavior
of the number of such matrices. In [8], for ℓ = 2, an effective algorithm for
computing the density dt,e (resp. d′t,e) of the quadratic fields with 4-class
rank e (in the narrow sense) in the set of imaginary (resp. real) quadratic
fields with t ramified primes, and explicit formulas for their limiting densities
d∞,e = limt→∞ dt,e and d′∞,e = limt→∞ d′t,e are given. An explicit formula for
the limiting density d∞,e, which depends only on ℓ and e, is given in [10] for
an arbitrary prime number ℓ. Similar results for ℓn-cyclic extensions of Q with
prescribed (narrow) genus groups are given in [9].

Let k = Fq(T ) be the rational function field over the finite field Fq. Let ℓ
be a prime number different from the characteristic of k and r be the smallest
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positive integer such that ℓ | qr−1. In this article we study analogous problems
for ℓ-cyclic extensions of k inside some cyclotomic function fields. The content
of this paper is as follows. In §1 we recall several asymptotic formulas in
A = Fq[T ], which can be found in [11] and [12]. In §2 we recall the genus
theory for function fields [2] and extend some results of Wittmann [13] to the
narrow case. In §3.1 we give an asymptotic formula for the number Ns,rn of
ℓ-cyclic extensions F inside some cyclotomic function fields with ℓ-class number
ℓs and with conductor N of degree rn in the case r > 1. Similar results in the
case r = 1 are given in §3.2. In §4 we give the density for ℓ-ranks in ℓ-cyclic
function fields. In §5 we give a generalization of §4 to ℓm-cyclic extensions of
k inside some cyclotomic function fields.

1. Some asymptotic formulas in A = Fq[T ]

In this section we recall several asymptotic formulas in A = Fq[T ], which
will be used later in this paper. For the details and proofs we refer to [11] and
[12].

• P (n):= the set of monic irreducible polynomials in A of degree n, and
p(n) = |P (n)|. Then

(1.1) p(n) =
qn

n
+O

(qn/2
n

)
([11, Chap. 8], [12, Theorem 2.2]).

• P (n, k):= the set of all square-free monic polynomials of degree n with
k-irreducible factors, and p(n, k) = |P (n, k)|. Then

(1.2) p(n, k) =
qn(log n)k−1

(k − 1)!n
+O

(qn(log n)k−2

n

)
([11, Theorem 9.9]).

• Pr(rn, k):= the set of all square-free monic polynomials of degree rn
with k-irreducible factors whose degrees are divisible by r, and pr(rn, k)
= |Pr(rn, k)|. Following the method of [11, §9],

(1.3) pr(rn, k) =
qrn(log n)k−1

(k − 1)!rkn
+O

(qrn(log n)k−2

n

)
.

Intuitively, (1.3) follows from (1.2) and that the probability that a prime whose
degree is divisible by r is 1

r . For A,M ∈ A, relatively prime,

• P (n,A,M):= the set of monic irreducible polynomials of degree n
which are congruent to A modulo M , and p(n,A,M) = |P (n,A,M)|.
Then

(1.4) p(n,A,M) =
qn

ϕ(M)n
+O

(qn/2
n

)
([12, Theorem 4.8]),

where ϕ(M) = |(A/MA)×|.
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Also, for a nontrivial Dirichlet character χ, we have

(1.5)
∑

P, degP=n

χ(P ) = O
(qn/2

n

)
([12, §4 (4), (5)]).

From (1.1), we have

(1.6)
∑

P,degP≤n

degP

qdegP
= n+O(1),

(1.7)
∑

P, r|degP≤nr

degP

qdegP
= n+O(1),

(1.8)
∑

P,degP≤n

1

qdegP
= log n+O(1),

(1.9)
∑

P, r|degP≤nr

1

qdegP
=

log n

r
+O(1).

From (1.2), (1.3) and the partial summation formula, we have

(1.10)
n∑

d=1

∑
P∈P (d,k)

1

qd
∼ (log n)k

k!
,

(1.11)

n∑
d=1

∑
P∈Pr(rd,k)

1

qrd
∼ (log n)k

k!rk
.

One more asymptotic formula which will be used later is

(1.12)
∑

m1+···+mk=n

1

m1 · · ·mk
∼ k(log n)k−1

n
.

2. Genus theory for function fields

Write ∞ for the place of k associated to 1/T . Let k∞ be the completion of

k at ∞, i.e., k∞ = k((1/T )). Let Ω = k∞( q−1
√
−1/T ). We only consider those

function fields which can be embedded into Ω. For a monic polynomial M of
A, kM denotes the cyclotomic function field of conductor M (see [12, §12]).
Any abelian extension F of k inside Ω is contained in kM for some M . The
smallest such M is called the conductor of F . From now on we always assume
that every extension of k is contained in some cyclotomic function field. Let ℓ
be a prime number different from the characteristic of k and r be the smallest
positive integer such that ℓ | qr − 1.

Let F be a ℓ-cyclic extension of k, and write N = NF for the conductor
of F . Then N must be square-free since F/k is tamely ramified and for each
prime divisor P of N , degP is divisible by r, since the ramification index ℓ
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divides qdegP − 1, the order of the multiplicative group of the residue field of
P . Write N = P1 · · ·Pt. It is easy to see that the number of such extensions
F with conductor P1 · · ·Pt is (ℓ− 1)t−1. Write HF for the Hilbert class field of
F . Then the genus field GF of F/k is defined to be the maximal extension of
F in HF which is the compositum of F and some abelian extension of k. Let
Cl(F ) be the ideal class group of the integral closure OF of A in F , and Cl(F )ℓ
be its Sylow ℓ-subgroup. Let σ be a fixed generator of G = Gal(F/k) and

λi(F ) := dimFℓ

(
Cl(F )

(σ−1)i−1

ℓ /Cl(F )
(σ−1)i

ℓ

)
for i ≥ 1.

It is known that ([2, §2])

Cl(F )ℓ/Cl(F )σ−1
ℓ ≃ Cl(F )/Cl(F )σ−1 ≃ Gal(GF /F ).

It is well-known that Cl(F )Gℓ and Cl(F )ℓ/Cl(F )σ−1
ℓ are elementary abelian

groups of rank λ1. Since F is contained in some cyclotomic function field,
the inertia degree f∞ at ∞ should be 1, and the ramification degree e∞ is 1 if
r > 1.

Now we consider the narrow case. We define the narrow Hilbert class field
H+

F of F to be the maximal abelian extension of F in Ω, unramified outside
the places over ∞. For each place v of F over ∞ we write Fv to denote the
completion of F at v and Nv be the norm map from Fv to k∞. We define a
sign map sgnv : Fv → Fq by sgnv(x) = sgn(Nv(x)), where sgn is the usual
sign map on k∞. An element x ∈ F is called totally positive if sgnv(x) = 1 for
any v lying over ∞. Denote by F+ the set of all totally positive elements of F .
The narrow ideal class group Cl+(F ) of F is defined to be the quotient group
of fractional ideals modulo principal fractional ideals generated by elements of
F+. The narrow genus field G+

F of F/k is defined to be the maximal extension

of F in H+
F which is the compositum of F and some abelian extension of k. See

[2] for details on the genus theory of function fields. Let

λ+
i (F ) := dimFℓ

(
Cl+(F )

(σ−1)i−1

ℓ /Cl+(F )
(σ−1)i

ℓ

)
for i ≥ 1.

Note that if r > 1, then Cl+(F )ℓ = Cl(F )ℓ and so λ+
i (F ) = λi(F ). We will

use the following lemmas proved in [13]. The narrow case can be proved by a
similar method as in [13].

Lemma 2.1 ([13, Theorem 2.1]). Let F be as above.

(i) If r > 1, or r = 1 and ℓ | degPi for all i, then λ1(F ) = t− 1.
(ii) In all other cases, λ1(F ) = t− 2 + logℓ(e∞f∞).
(iii) λ+

1 (F ) = t− 1.

Let pi be the unique prime ideal of F lying above Pi.

Lemma 2.2 ([13, Corollary 2.3, 2.4]). Let F be as above.

(i) If r > 1, then Cl(F )Gℓ is generated by the classes [p1], . . . , [pt].
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(ii) If r = 1, then

Cl(F )Gℓ = ⟨[p1], . . . , [pt]⟩,
except the case that ℓ | degPi for all i and NF/k(O∗

F ) = (F∗
q)

ℓ. In this
case,

Cl(F )Gℓ = ⟨[p1], . . . , [pt], [a]⟩,
where aσ−1 = αOF and NF/k(α) ∈ F∗

q \ (F∗
q)

ℓ.

(iii) If r = 1 and ∞ splits completely, then Cl+(F )Gℓ is generated by [p1]+,

. . . , [pt]+ and [a]+, where aσ−1 = αOF and NF/k(α) ∈ F∗ℓ
q \ F∗ℓ2

q . In

particular, if ℓ||(q − 1), then Cl+(F )Gℓ is generated by [p1]+, . . . , [pt]+.

Proof. We only need to prove (iii). Recall that a fractional ideal a of OF is said
to be ambiguous if it is invariant under the G-action, i.e., aσ = a. Any ideal
class in Cl(F )G or Cl+(F )G is called an ambiguous ideal class. Let a be an ideal
representing an ambiguous ideal class. Then aσ−1 = αOF with α ∈ F+. Then
NF/k(α) ∈ F∗ℓ

q , that is, NF/k(α) = η−ℓ, and so NF/k(αη) = 1 for some η ∈ F∗
q .

By Hilbert Theorem 90, there exists β ∈ F such that αη = βσ/β. Then, since

aσ−1 = (αη) = (βσ/β),

β−1a is an ambiguous ideal. Therefore, [a]+ ∈ ⟨[p1]+, . . . , [pt]+⟩ if and only if
β ∈ F+, which is equivalent to αη ∈ F+. But since α ∈ F+, this is equivalent
to η ∈ F∗ℓ

q .
We know from [13, §2] that

⟨[p1], . . . , [pt]⟩ = I(F )GP (F )/P (F ) = I(F )G/I(F )G ∩ P (F )

has ℓ-rank at least t − 2. Thus ⟨[p1]+, . . . , [pt]+⟩ = I(F )GP (F+)/P (F+) =
I(F )G/I(F )G ∩ P (F+) has ℓ-rank at least t− 2. It is not hard to see that the
ℓ-rank of Cl+(F )Gℓ is t− 1, thus we get the result. □

Remark 2.3. In the number field case, since the size of the group of units in Z
is 2, there does not exist such an ideal a as in Lemma 2.2(iii).

Suppose first that r = 1. In this case F = k( ℓ
√
D), where D = aP e1

1 · · ·P et
t

with 1 ≤ ei < ℓ and a ∈ F∗
q . We will determine a. From [1, Lemma 3.2], it

is known that if ℓ | degPi, then k( ℓ
√
Pi) ⊆ kPi , and that if ℓ ∤ degPi, then

k( ℓ

√
−P di

i ) ⊆ kPi , where di is a positive integer such that di degPi ≡ 1 mod ℓ.

Thus we see that a can be taken to be (−1)m, where m =
∑

ℓ∤degPi
νi and

diνi ≡ ei mod ℓ. When ℓ ̸= 2, or q ≡ 1 mod 4 and ℓ = 2, −1 is an ℓ-th power
in F∗

q . Thus one may take a to be 1 in these cases. If q ≡ 3 mod 4 and ℓ = 2,
then we take a = (−1)s, where s is the number of odd degree Pi’s.

Proposition 2.4 ([13, Theorem 2.5]). Let F = k( ℓ
√
D) be as above.

(i) G+
F = k( ℓ

√
(−1)degP1P1, . . . ,

ℓ
√
(−1)degPtPt).
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(ii) If ℓ ∤ degD or ℓ | degPi for all i, then

GF = G+
F = k( ℓ

√
(−1)degPiP1, . . . ,

ℓ

√
(−1)degPtPt).

(iii) If ℓ | degD but ℓ ∤ degPi for 1 ≤ i ≤ s and ℓ | degPj for s+1 ≤ j ≤ t,
then

GF = k( ℓ

√
P1P

u2
2 , . . . , ℓ

√
P1P

us
s , ℓ

√
Ps+1, . . . ,

ℓ
√

Pt),

where degP1 + ui degPi ≡ 0 mod ℓ.

Let η be a fixed primitive ℓ-th root of unity in Fq. Let (
A
P )ℓ be the ℓ-th power

residue symbol. For a field F as above, we define a t × t matrix MF = (mij)
over Fℓ by, for i ̸= j,

ηmij =
( P̄i

Pj

)
ℓ
,

where P̄i = (−1)degPiPi and mii is defined to satisfy

t∑
i=1

eimij = 0.

If a is as in Lemma 2.2(ii) or (iii), let NF/k(a) = (A) for some A ∈ A. Then
mi0 is defined to be

ηmi0 =
(Pi

A

)
ℓ
.

Let MF := (mij), which is a t × t or t × (t + 1) matrix with entries in Fℓ

according to the existence of a as in Lemma 2.2. Then it can be shown (cf.
[13, §3]) that

λ2(F ) = λ1(F )− rank(MF ), when ∞ ramifies in F

and

λ+
2 (F ) = λ+

1 (F )− rank(MF ), when ∞ splits in F.

In the case (iii) of Proposition 2.4, a (t − 1) × t matrix M ′
F is defined in [13,

§3] and it was shown that

λ2(F ) = t− 2− rank(M ′
F ).

Now suppose that r > 1. Let

w =
t∑

i=1

(degPi, r),

where (a, b) denotes the greatest common divisor of a and b. A t × w matrix

M̃F over Fℓ is defined in [13, §4] and it is shown that

λ2(F ) = t− 1− rank(M̃F ).
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Let k′ = Fqr · k and F ′ = Fqr · F . Let the notations be as in [13, §4]. By
identifying Gal(F ′/k′) ∼= Gal(F/k) ∼= Fℓ, we have(Qi

Pj

)
ℓ
=

(Qi, F
′/k′

(Pj)

)
and (Qi, F

′/k′

(Pj)

)∣∣∣
F
=

(Pi, F/k

(Pj)

)
.

Thus the matrix M̃F is essentially the same as the matrix M3 defined in [6,
§2]. We let MF be M3. The product formula for norm residue symbol implies
that the sum of each column of MF is zero.

3. Asymptotic behavior of ℓ-cyclic extensions
with prescribed ℓ-class numbers

Let F be a cyclic extension of k of degree ℓ with conductor N = P1 · · ·Ps.
Let Hi be the unique cyclic extension of k of degree ℓ with conductor Pi. Let
Ki = F ·Hi and K = K1 · · ·Kt.

3.1. r > 1 case

In this subsection we assume that r > 1. Let

• Ns,n:= the number of ℓ-cyclic extensions F of k with |Cl(F )ℓ| = ℓs and
with conductor N of degree n,

• Ms,n:= the number of ℓ-cyclic extensions F of k with |Cl(F )ℓ| = ℓs−1

and with conductor N of degree n such that N has exactly s distinct
prime factors,

• Gs,n:= the number of ℓ-cyclic extensions F of k with conductor N =
P1 · · ·Ps of degree n such that Pm is an ℓ-th power residue modulo
P1, . . . , Pm−2 but an ℓ-th power nonresidue modulo Pm−1.

It can be shown, as in Theorem 1 of [4], that if F is an ℓ-cyclic extension of
k satisfying the conditions to define Gs,n, then the ℓ-class group of F is an
elementary abelian ℓ-group of rank s− 1. Hence Ms,n ≥ Gs,n.

Since we know that r must divide the degrees of prime factors of N , we
replace n by rn and write degPi = rki.

Let χPi be a Dirichlet character of exponent ℓ of conductor Pi, that is, a
character of Gal(kPi/k). For a prime Pm ̸= P1, . . . , Pm−1, let
(3.1)

Wm :=
1

ℓm−1

( ℓ−1∑
j1=0

χj1
P1
(Pm)

)
· · ·

( ℓ−1∑
jm−2=0

χ
jm−2

Pm−2
(Pm)

)( ℓ−1∑
jm−1=0

ζjm−1χ
jm−1

Pm−1
(Pm)

)
,

where ζ is a primitive ℓ-th root of unity. Since
∑ℓ−1

k=0 χ
k
Pj
(Pm) = ℓ or 0, de-

pending on Pm is ℓ-th power residue modulo Pj or not, we have

Mt,rn ≥ Gt,rn ≥
∑

W2 · · ·Wt,
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where the sum is over the distinct primes P1, . . . , Pt with deg(P1 · · ·Pt) = rn
and r | degPi. Let yi := 2i

√
n. Then y1 + · · ·+ yt−1 < yt = y. Let

At,rn :=
∑

W2 · · ·Wt−1

∑
Pt, degPt=rn−degP1−···−degPt−1

Wt,

where the first sum is over distinct Pi, 1 ≤ i ≤ t−1 with degPi−1 ≤ degPi ≤ yi
and r | degPi. Then

(3.2) Mt,rn ≥ Gt,rn ≥ At,rn.

Write

Wt =
1

ℓt−1

(
1 +

∑
J

ζjt−1χj1
P1

· · ·χjt−1

Pt−1
(Pt)

)
,

where J = (j1, . . . , jt−1) ̸= (0, . . . , 0). Then, by (1.1) and (1.5),∑
degPt=r(n−k1−···−kt−1)

Wt =
qr(n−k1−···−kt−1)

ℓt−1r(n− k1 − · · · − kt−1)
+O

( qr(n−k1−···−kt−1)/2

n− k1 − · · · − kt−1

)
.

For ki ≤ yi, since n− y = n− 2t
√
n > n/2 for large n,

qr(n−k1−···−kt−1)

r(n− k1 − · · · − kt−1)

=
qr(n−k1−···−kt−1)

rn
+

qr(n−k1−···−kt−1)(k1 + · · ·+ kt−1)

rn(n− k1 − · · · − kt−1)

=
qr(n−k1−···−kt−1)

rn
+O

( (k1 + · · ·+ kt−1)q
r(n−k1−···−kt−1)

n2

)
and

qr(n−k1−···−kt−1)/2

(n− k1 − · · · − kt−1)
= O

(qr(n−k1−···−kt−1)

n2

)
.

Thus ∑
degPt=r(n−k1−···−kt−1)

Wt =
qr(n−k1−···−kt−1)

ℓt−1rn
+O

( (k1 + · · ·+ kt−1)q
r(n−k1−···−kt−1)

n2

)
.

From (1.7) and (1.9) we have, for y = yt = 2t
√
n,∑

P1,...,Pt−1
r|deg Pi≤ryi

qrn(degP1 + · · ·+ degPt−1)

n2qdegP1 · · · qdegPt−1
= O

(y(log y)t−2qrn

n2

)
= O

(qrn
n

)
.

Therefore

At,rn =
1

ℓt−1

∑
P1,...,Pt−1: distinct

r|deg Pi≤ryi

W2 · · ·Wt−1
qnr

rnqdegP1 · · · qdegPt−1
+O

(qrn
n

)
.

Now

Wt−1 =
1

ℓt−2

(
1 +

∑
J

ζjt−1χj1
P1

· · ·χjt−2

Pt−2
(Pt−1)

)
.
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Let χQ be a nontrivial character with exponent ℓ and conductor Q | P1 · · ·Pt−2.
Let

SQ(u) :=
∑

degPt−1=ru

χQ(Pt−1).

Then, by (1.5)

[yt−1]∑
u=

deg Pt−2
r

SQ(u)

qru
=

[yt−1]∑
u=

deg Pt−2
r

O
( 1

uq
ru
2

)
= O(1).

Continuing the same process, we have

At,rn =
1

ℓt(t−1)/2

∑
P1,...,Pt−1

qrn

rnqdegP1 · · · qdegPt−1
+O

(qrn
n

(log y)t−2
)
.

Thus

At,rn = c
qrn(log n)t−1

rn
+O

(qrn(log n)t−2

n

)
.

Since Ms,rn = O(pr(rn, s)), we have, from (1.4) and (3.2),

Ms,rn = O
(qrn

n
(log n)s−1

)
.

If an ℓ-extension F of k has |Cl(F )ℓ| = ℓs, then at most s + 1 primes can be
ramified. Now the rest of the argument to prove Theorem 1 in [5] works here
and we get

Theorem 3.1.

Ns,rn = Ms+1,rn +O
(Ms+1,rn

log n

)
.

We will compute Ms+1,rn. As in [6, §2, §3], one can see easily that the
ℓ-cyclic extension F has ℓ-class number ℓs precisely when rank(MF ) = s, and
that the number of distinct (s + 1) × (s + 1) matrices Γ over Fℓ such that
rank(Γ) = s and such that Γ = MF for some field F is

(3.3) ℓ
s(s−1)

2 (ℓ− 1)s
s∏

i=1

(ℓi + · · ·+ ℓ+ 1).

Note that Γ = MF if and only if the sum of each column of Γ is 0 by the
product formula of Hilbert symbols.

Now we consider the number N(Γ) of F with conductor N = P1 · · ·Ps+1 of
degree rn and the corresponding matrix MF = Γ. Let k′ = Fqr · k and Li =
k′ ·Hi, where Hi is the ℓ-cyclic extension of k with conductor Pi. Then Li/k

′ is
a Kummer extension Li = k′( ℓ

√
µi) for some µi ∈ k′. Then k ·F = k′( ℓ

√
µ) with

µ = µe1
1 · · ·µes+1

s+1 . Let L′
i = k′( ℓ

√
Pi). Define, for a prime P of degree divisible

by r, λi(pj) and ωi(pj) as follows;

(pj ,Li/k
′)( ℓ

√
µi) = λi(pj)

−1 ℓ
√
µi, (pj ,L

′
i/k

′)( ℓ
√
Pi) = ωi(pj)

−1 ℓ
√
Pi,
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where p is a prime of k′ lying over P . Let δi(j, k;u, v)(P ) = 1 if (λi(P )j , ωi(P )k)
= (ζu, ζv), and 0 otherwise.

Lemma 3.2. We have, for j = 1, . . . , ℓ− 1,

(3.4)
∑

degP=rm

ℓ−1∑
k=1

δi(j, k;u, v)(P ) ∼ ℓ− 1

ℓ2
qrm

rm
.

Proof. We may assume j = 1. The probability for a prime P to satisfy
(λi(P ), ωi(P )) = (ζu, ζv) is 1

ℓ2 . When v = 0, then ωi(P )k = 1 = ζ0 for any k =

1, . . . , ℓ − 1. Hence the probability for a prime P to satisfy (λi(P ), ωi(P )k) =
(ζu, ζ0) for some k = 1, . . . , ℓ−1 is ℓ−1

ℓ2 . When v ̸= 0, then, for ωi(P ) ̸= 1, there

exists a unique k = 1, . . . , ℓ − 1 such that ωi(P )k = ζv. Thus the probability
for a prime P to satisfy (λi(P ), ωi(P )k) = (ζu, ζv) for some k = 1, . . . , ℓ− 1 is
again ℓ−1

ℓ2 . Then the result follows from the equation (1.1). □
Note the difference of (3.4) from the formula in [6, p. 200]. In the classical

case the condition p ≡ 1 mod ℓ is imposed instead of the condition that degPi

is divisible by r, and the probability for a prime to satisfy p ≡ 1 mod ℓ is 1
ℓ−1

by Dirichlet theorem on arithmetic progression. We repeat the process to get

(3.5)
∑

degPw=rm

ℓ−1∑
k=1

w−1∏
i=1

δi(j, k;u, v)(Pw) ∼
ℓ− 1

ℓ2(w−1)

qrm

rm
.

Theorem 3.3. We have, for (s+ 1)× (s+ 1) matrix Γ such that the sum of
each column is 0,

N(Γ) ∼ (ℓ− 1)s

s!rs+1ℓs2+s

qrn(log n)s

n
,

and so

Ns,rn ∼
(ℓ− 1)2s

∏s
i=1(ℓ

i + · · ·+ ℓ+ 1)

s!rs+1ℓ(s2+3s)/2

qrn(log n)s

n
.

Proof. (Sketch of proof) As in §4 of [6], we have

N(Γ) =
1

(s+ 1)!

∑
m1+···+ms+1=n

∑
degP1=rm1

∑
degP2=rm2

Y2 · · ·
∑

degPs=rms

Ys

∑
degPs+1=rms+1

Ys+1,

where

Yw =

ℓ−1∑
k=1

w−1∏
i=1

δi(j, k;u, v)(Pw)

for w = 2, . . . , s+ 1. Then using the equation (3.5), we have

N(Γ) ∼ 1

(s+ 1)!

(ℓ− 1)s

ℓs2+s

qrn

rs+1

∑
m1+···+ms+1=n

1

m1 · · ·ms+1

∼ (ℓ− 1)s

s!rs+1ℓs2+s

qrn(log n)s

n
,

by the equation (1.12). □
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Remark 3.4. (1) One can do the error estimate as in [6] using (1.5) to get the

error term o( q
rn(logn)s

n ). But it is not necessary for our purpose.
(2) In the proof of [6, Lemma 3], also in our proof here, the condition that

Γ has rank s is not necessary to get the estimate N(Γ). Thus the asymptotic
formula for N(Γ) works for any Γ such that the sum of each column is 0. This
will be used in the computation in §4.

3.2. r = 1 case

Now we assume that r = 1, that is ℓ | q− 1. We consider ℓ-cyclic extensions
F of k with conductor N of degree n and with |Cl(F )ℓ| = ℓs. We have two
cases. One is real, that is, ∞ splits completely. The other is imaginary, that is,
∞ ramifies. The case that ∞ is inert cannot happen, since we have assumed
that the field is contained in some cyclotomic function field. Let

• NI,s,n:= the number of imaginary ℓ-cyclic extensions F of k with con-
ductor N of degree n and |Cl(F )ℓ| = ℓs,

• NR,s,n:= the number of real ℓ-cyclic extensions F of k with conductor
N of degree n and |Cl(F )ℓ| = ℓs,

• MI,t,n := the number of imaginary ℓ-cyclic extensions F of k with
conductor N of degree n such that N has exactly t distinct prime
factors and |Cl(F )ℓ| = ℓt−1,

• MR,t,n := the number of real ℓ-cyclic extensions F of k with conductor
N of degree n such that N has exactly t distinct prime factors and
|Cl(F )ℓ| = ℓt−2.

• For ℓ|n, M ′
t,n := the number of ℓ-cyclic extensions F of conductor N

of degree n, such that N has exactly t prime factors, all having degrees
divisible by ℓ and |Cl(F )ℓ| = ℓt−1.

In this case F = k( ℓ
√
D) with D = αP e1

1 · · ·P et
t , 1 ≤ ei ≤ l − 1. We

may assume that e1 = 1. Here α ∈ F∗
q is chosen so that F ⊆ kN , where

N = P1 · · ·Pt. If ℓ divides degD, then it is real. If ℓ does not divide degD,
then it is imaginary. If ℓ = 2, then (e1, . . . , et) = (1, . . . , 1). In this case
whether F is real or imaginary depends only on the parity of degN . One can
follow almost the same process to prove Theorem 3.1 as in the case r > 1 to
get

NI,s,n = MI,s+1,n +O
(MI,s+1,n

logn

)
,

and

NR,s,n =

{
MR,s+2,n +O(

MR,s+2,n

logn ) for ℓ ∤ n,
MR,s+2,n +M ′

s+1,n +O(
MR,s+2,n

logn ) +O(
M ′

s+1,n

logn ) for ℓ|n.
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But one can show as in the case r > 1 that MR,s+2,n ∼ c q
n(logn)s+1

n for some

c > 0 and M ′
s+1,n = O( q

n(logn)s

n ). Therefore,

NR,s,n = MR,s+2,n +O
(MR,s+2,n

log n

)
.

Some calculation concerning this will be carried out in §4.2, where we replace
Cl(F ) by Cl+(F ).

Remark 3.5. From the equations (1.2) and (1.3), it is very likely that M ′
s+1,n =

o(MR,s+2,n).

4. Density for ℓ-ranks of ℓ-cyclic function fields

4.1. r > 1 case

In this subsection we assume r > 1, that is ℓ ∤ q− 1. Let At be the set of all
ℓ-cyclic extensions F of k such that t finite primes ramify in F/k, and

At;n := {F ∈ At | deg(cond(F )) = n},
At,e := {F ∈ At |λ2(F ) = e},
At,e;n := At,e ∩At;n,

where cond(F ) denotes the conductor of F . We define the density dt,e by

dt,e := lim
n→∞

|At,e;rn|
|At;rn|

.

Note that At,0;n = Mt,n in §3.1. For any monic irreducible polynomials
P1, . . . , Pt with r|degPi, there are (ℓ− 1)t−1 distinct fields F in At with con-
ductor N = P1 · · ·Pt. So by (1.3), we have

(4.1) |At;rn| = (ℓ− 1)t−1
∑

deg(P1···Pt)=rn

r| deg Pi

1 ∼ (ℓ− 1)t−1

(t− 1)!rt
qrn(log n)t−1

n
.

Let MF be the t × t matrix over Fℓ associated to F as in §2. Following the
arguments in [6, §2, §3], we see that λ2(F ) = t− 1− rank(MF ). Then |At,e;rn|
can be estimated as

(4.2) |At,e;rn| ∼
∑

Γ
rank(Γ)=t−1−e

∑
deg(P1···Pt)=rn

r| deg Pi

∑
F

cond(F )=P1···Pt

δΓ,F ,

where δΓ,F = 1 if MF = Γ and δΓ,F = 0 otherwise. It is shown in Theorem 3.3
that, for t× t matrix Γ such that the sum of each column is 0,
(4.3)

N(Γ) =
∑

deg(P1···Pt)=rn

r| deg Pi

∑
F

cond(F )=P1···Pt

δΓ,F ∼ (ℓ− 1)t−1

(t− 1)!rtℓt(t−1)

qrn(log n)t−1

n
.



ℓ-RANKS OF CLASS GROUPS OF FUNCTION FIELDS 61

It is known ([7, Proposition 2.1]) that the number N(t, t−1−e) of t×t matrices
Γ, where the sum of each column is 0, over Fℓ with rank t− 1− e is

(4.4) N(t, t− 1− e) =

t−1−e∏
j=1

(ℓt − ℓj−1)

 ∑
k1+···+kt−1−e≤e

each ki≥0

( t−1−e∏
s=1

ℓsks

)
.

So we have, from (4.2), (4.3) and (4.4),

|At,e;rn| ∼
(ℓ− 1)t−1

(t− 1)!rtℓt(t−1)

qrn(log n)t−1

n

t−1−e∏
j=1

(ℓt − ℓj−1)

 ∑
k1+···+kt−1−e≤e

each ki≥0

( t−1−e∏
s=1

ℓsks

)
.

Thus

dt,e =
1

ℓte

t−1−e∏
j=1

(
1− 1

ℓt+1−j

) ∑
k1+···+kt−1−e≤e

each ki≥0

( t−1−e∏
s=1

ℓsks

)

for 1 ≤ e ≤ t− 1 and dt,t−1 = ℓ−t(t−1). Let

d∞,e := lim
t→∞

dt,e.

Then we follow almost the same argument as in [10, §3] to get

d∞,e =
ℓ−e(e+1)

∏∞
k=1(1− ℓ−k)∏e

k=1(1− ℓ−k)
∏e+1

k=1(1− ℓ−k)
for e = 0, 1, 2, . . . .

4.2. r = 1 case

Let At be the set of all ℓ-cyclic extensions F such that t finite primes ramify
in F/k, and

At;n := {F ∈ At | deg(cond(F )) = n},
At,e := {F ∈ At |λ2(F )+ = e},
At,e;n := At,e ∩At;n,

where cond(F ) denotes the conductor of F . We define the density dt,e by

dt,e := lim
n→∞

|At,e;n|
|At;n|

.

For each N ∈ P (n, t) and e := (1, e1, . . . , et) with 1 ≤ ei < ℓ, let

Ne := P e1
1 P e2

2 · · ·P et
t .

Then any field in At;n is of the form

FN,e := k
(

ℓ

√
(−1)degNeNe

)
.

Thus |At;n| = (ℓ− 1)t−1p(n, t). Note that if FN,e ∈ At,e;n for some e, then so
in FN,e′ for any e′.
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From now on we assume that ℓ||(q − 1). The general case is very hard to
compute the rank of MF because of ambiguous ideal class without containing
ambiguous ideal. Consider first the case that ℓ is odd, so that a = 1 (See §2).
It is shown in [13] that MF = (mij) is given by: mij =

(
Pi

Pj

)
ℓ
, for i ̸= j, where

(−)ℓ is the ℓ-th power residue, and mjj is defined by the relation
∑

i eimij = 0.

Then, since q−1
ℓ is even or characteristic is 2, from the ℓ-th power reciprocity

([12, Theorem 3.3]), MF is symmetric. There is an algorithm to determine the
number of s × s symmetric matrices with rank r over Fℓ from the following
proposition.

Proposition 4.1. Let M be a symmetric u× u matrix of rank r over Fℓ. Let

M1 =

(
M V
V T v

)
,

with V ∈ Fu
ℓ , v ∈ Fℓ. Then among all possible M1,

(i) ℓr of them have rank r.
(ii) ℓr(ℓ− 1) of them have rank r + 1.
(iii) ℓu+1 − ℓr+1 of them have rank r + 2.

Suppose that we have given a total order ‘<’ on the set of monic irreducible
polynomials in A. For N,N ′ ∈ P (n, t), we say that N and N ′ are equivalent

if
(Pj

Pi

)
ℓ
=

(P ′
j

P ′
i

)
ℓ
, where N = P1 · · ·Pt, P1 < · · · < Pt and N ′ = P ′

1 · · ·P ′
t ,

P ′
1 < · · · < P ′

t . Let N (N) be the set of polynomials in P (n, t), which are
equivalent to N . Then it can be shown that (similar to §3.1)

|N (N)| ∼ ℓ−
t2−t

2
qn(log n)t−1

(t− 1)!n
∼ ℓ−

t2−t
2 p(n, t).

Note that we have ℓ−
t2−t

2 instead of ℓ−
t2+t

2 because we don’t have any condition
on degPi, different from the classical case (formula (2.12) of [8]), where the
condition pi ≡ p′i mod 4 is imposed.

Let Ñ(t− 1, u) be the number of (t− 1)× (t− 1) symmetric matrices with
rank u. Then one can show as in §2 of [8] that

|At,e;n| = (ℓ− 1)t−1Ñ(t− 1, t− 1− e)|N (N)|.

Then

dt,e;n :=
|At,e;n|
|At;n|

∼ ℓ−
t2−t

2 Ñ(t− 1, t− 1− e),

which is just the density g(t, e) of (t−1)×(t−1) symmetric matrices with rank
t − 1 − e in the set of (t − 1) × (t − 1) symmetric matrices. We will compute
the limit limt→∞ g(t, e). From Proposition 4.1, we see that

g(t+ 1, e) =
1

ℓe
g(t, e− 1) +

ℓ− 1

ℓ1+e
g(t, e) +

ℓ1+e − 1

ℓ1+e
g(t, e+ 1), if e > 0
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and

g(t+ 1, 0) =
ℓ− 1

ℓ
g(t, 0) +

ℓ− 1

ℓ
g(t, 1).

Let G(t) = (g(t, 0), g(t, 1), . . . , g(t, i), . . .). One can show by induction that
G(t) converges to, as t → ∞,

G = α
(
1,

1

ℓ− 1
, . . . ,

1∏k
i=1(ℓ

i − 1)
, . . .

)
,

where

α−1 = 1 +
1

ℓ− 1
+

1

(ℓ− 1)(ℓ2 − 1)
+ · · · .

Now assume that q ≡ 3 mod 4 and ℓ = 2. Now the rest is almost the same
as the classical case replacing ‘p ≡ 1 mod 4’ (resp. p ≡ 3 mod 4) by ‘degP
is even’ (resp. odd). The reason for this is that the quadratic reciprocity

for function field in this case is (Pi

Pj
)(

Pj

Pi
) = (−1)degPi degPj in contrast with

( pi

pj
)(

pj

pi
) = (−1)

pi−1

2

pj−1

2 in the classical case. Then following the same ideas

to get Proposition 2.1 and Proposition 5.1 of [8], we get

|At,e;n| ∼
∑

1≤d≤t
d odd

N(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2

qn(log n)t−1

(t− 1)!n
for n odd,

|At,e;n| ∼
∑

1≤d≤t
d even

N(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2

qn(log n)t−1

(t− 1)!n
for n even,

and

dt,e;n ∼
∑

1≤d≤t
d odd

N(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2 for n odd,

dt,e;n ∼
∑

1≤d≤t
d even

N ′(t− 1, d− 1, t− 1− e)

(
t

d

)
2−

t2+t
2 for n even,

where N(s, d, r) is the number of s × s matrices M = (mij) over F2 with
mij ̸= mji for 1 ≤ i < j ≤ d and with mij = mji for d + 1 ≤ i ≤ s and
1 ≤ j ≤ s such that rank(M) = r, and N ′(s, d, r) is the number of s× (s+ 1)
matrices M ′ whose first column is the transpose of the vector (1, . . . , 1, 0, . . . , 0)
with first d entries 1 and the rest part is an s × s matrix M ′ = (m′

ij) over F2

with m′
ij ̸= m′

ji for 1 ≤ i < j ≤ d and m′
ij = m′

ji for d + 1 ≤ i ≤ s and

1 ≤ j ≤ s such that rank(M ′) = r. Then as in [8, §4, §5],
G(t) := (dt,0,2n+1, dt,1,2n+1, . . .) and G′(t) := (d′t,0,2n, d

′
t,1,2n, . . .)

converge to Y
2 and Y ′

2 as t → ∞, where

Y =

[ ∞∏
m=1

(1− 2−m)

]−1 (
1, 2, . . . , 2−i2

i∏
m=1

(1− 2−m)−2, . . .
)
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and

Y ′ =

[ ∞∏
m=2

(1− 2−m)

](
1, 2/3, . . . , 2−i(i+1)

i∏
m=1

(1−2−m)−1(1−2−m−1)−1, . . .
)
.

5. Generalization to ℓm-cyclic function fields

In this section we consider ℓm-cyclic extensions F of k and the following
question as in [9]: how likely is λ+

2 (F ) = 0, λ+
2 (F ) = 1, λ+

2 (F ) = 2, . . . ? When
m = 1, its answer is already obtained in §4. So we assume m ≥ 2. Assume
that we are given integers m1, . . . ,mt such that m = m1 ≥ m2 ≥ · · · ≥ mt ≥ 1.
Let ∆ be the abelian group of type (ℓm2 , . . . , ℓmt) (When t = 1, we let ∆ be
the trivial group).

Write A(∆) for the set of all F as above such that the narrow genus group
Cl+(F )ℓ/Cl+(F )1−σ

ℓ is isomorphic to ∆, and

A(∆)n := {F ∈ A(∆) : deg(cond(F )) = n},(5.1)

Ae(∆) := {F ∈ A(∆) : λ+
2 (F ) = e},(5.2)

Ae(∆)n := Ae(∆) ∩A(∆)n.(5.3)

Then we define the density de(∆) of Ae(∆) in A(∆) by

(5.4) de(∆) := lim
n→∞

|Ae(∆)rn|
|A(∆)rn|

.

It is easy to see that for any ordering (mji) of m1, . . . ,mt and monic irre-
ducible polynomials P1, . . . , Pt with qdegPi ≡ 1 mod ℓmji , there are∏t

i=1(ℓ
mji − ℓmji

−1)

(ℓm − ℓm−1)
=

t∏
i=2

(ℓmi − ℓmi−1)

distinct fields F in A(∆) such that the conductor of F is P1 · · ·Pt and each Pi

has ramification index ℓmji in F . So we have

(5.5) |A(∆)rn| ∼

[
t∏

i=2

(ℓmi − ℓmi−1)

]( ∑
(mji

)

(mji
)∑

deg(P1···Pt)=rn

qdeg Pi≡1 mod ℓ
mji

1
)
,

where
∑

(mji
) denotes a sum over all distinguishable orderings of m1, . . . ,mt,

and
∑(mji

)
is a sum for a fixed reordering (mji). For any positive integer k,

write rk for the smallest positive integer such that ℓk|qrk − 1. Then for any
monic irreducible polynomial P in A, we have qdegP ≡ 1 mod ℓk if and only if
rk|degP . Following the method of [11, §9], we have

(mji
)∑

deg(P1···Pt)=rn

qdeg Pi≡1 mod ℓ
mji

1 =

(mji
)∑

deg(P1···Pt)=rn

rmji
| deg Pi

1 ∼ qrn(log n)t−1

(t− 1)!(rm1 · · · rmt)n
.(5.6)
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Let vw = |{mi : mi = w}| for 1 ≤ w ≤ m. Since there are t!
(v1!)···(vm!)

distinguishable orderings (mji) of m1, . . . ,mt, by (5.5) and (5.6), we have

(5.7) |A(∆)rn| ∼
t
∏t

i=2(ℓ
mi − ℓmi−1)

(rm1 · · · rmt)(v1!) · · · (vm!)

qrn(log n)t−1

n
.

Now we are going to obtain an asymptotic formula forAe(∆)rn. Assume first
that r > 1, that is ℓ ∤ q−1. Following the arguments in [3, §5, Theorem 5.3], one
can associate a t×(t−1) matrix M̄ ′

F to F such that λ+
2 (F ) = t−1−rank(M̄ ′

F ).
Moreover, as in [9, §2], one can replace the matrix M̄ ′

F with a t× t matrix M̄F

such that rank(M̄ ′
F ) = rank(M̄F ). Especially, if F ∈ Ae(∆), then the matrix

M̄F has rank t− 1− e. Then |Ae(∆)rn| can be estimated as

(5.8) |Ae(∆)rn| ∼
∑

Γ
rank(Γ)=t−1−e

∑
(mji

)

(mji
)∑

deg(P1···Pt)=rn

rmji
| deg Pi

∑
F

cond(F )=P1···Pt

δΓ,

where the first sum is over all t× t matrices Γ over Fℓ with rank t− 1− e. The
fourth sum runs over all F ∈ A(∆) with conductor P1 · · ·Pt such that each Pi

has ramification index ℓmji , and δΓ = 1 if M̄F = Γ and δΓ = 0 otherwise. If the
ordering (mji) has mji = mi for 1 ≤ i ≤ t, then M̄F has the following form:

(5.9) MF =

(
M1 M2

O D

)
where M1 is a vm × vm matrix over Fℓ in which the sum of entries in each row
is zero, M2 is a vm× (t−vm) matrix over Fℓ, O is the (t−vm)×vm zero matrix
and D is a (t− vm)× (t− vm) diagonal matrix.

Let Γ be a t× t matrix over Fℓ such that Γ has the same form as the matrix
on the right hand side of (5.9), and let

N(Γ) =
∑

deg(P1···Pt)=rn

rmi
| deg Pi

∑
F

cond(F )=P1···Pt

δΓ,

where δΓ = 1 if M̄F = Γ and δΓ = 0 otherwise. Following the idea of [9, §2]
and adopting the similar method as in §3.1, we get:

Proposition 5.1. We have

N(Γ) ∼
∏t

i=2(ℓ
mi − ℓmi−1)

(rm1 · · · rmt)ℓ
vm(t−1)+t−vm

qrn(log n)t−1

(t− 1)!n
,

and so

|Ae(∆)rn| ∼
tN(t, vm, t− 1− e)(ℓm − ℓm−1)vm−1

∏t
i=vm+1(ℓ

mi − ℓmi−1)

(rm1 · · · rmt)(v1!) · · · (vm!)ℓvm(t−1)+t−vm

×qrn(log n)t−1

n
,(5.10)
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where N(t, vm, t − 1 − e) denote the number of Γ’s as above with rank(Γ) =
t− 1− e.

Finally, by (5.7) and (5.10), we have

(5.11) de(∆) =
N(t, vm, t− 1− e)

ℓvm(t−1)+t−vm
for 0 ≤ e ≤ t− 1.

We note that the number N(t, vm, t− 1− e) can be computed as in Lemma 2.4
and the remark following it in [9].

Now suppose that r = 1. As before we only consider the case ℓ||(q− 1). Let
Bt be the set of all ℓ

m-cyclic extensions F of k such that t finite primes ramify
in F/k, and

Bt;n := {F ∈ Bt : deg(cond(F )) = n},(5.12)

Bt,e := {F ∈ Bt : λ
+
2 (F ) = e},(5.13)

Bt,e;n := Bt,e ∩Bt;n.(5.14)

Then as in [9] we see that the density dt,e := limn→∞
|Bt,e;rn|
|Bt;rn| is given by

(5.15) dt,e =

∑t
u=1

N(t,u,t−1−e)
ℓu(t−1)+t−u

(
t
u

) (m−1)t−u

mt

1− (m−1
m )t

,

and its limit d∞,e := limt→∞ dt,e = 0.
The formula (5.7) also works in this case too. As in the case of r > 1, we

get the matrix MF in (5.9). But in this case we need one more step, that is,
multiply zi, which is defined as in (2.12) of [9], to each ith row of MF with
1 ≤ i ≤ vm. The resulting matrix M∗

F has the same rank as MF and is of the
form

(5.16) M∗
F =

(
M∗

1 M∗
2

O D

)
where M∗

1 is a vm×vm symmetric matrix over Fℓ in which the sum of entries in
a row is 0 and M∗

2 , O,D are the same as before. When ℓ = 2 as in the classical
case, we do not need this step, since zi = 1 in this case. The reason for the
symmetricity of M∗

1 follows from the ℓth power reciprocity law ([12], Theorem
3.3) for ℓ > 2, and from the fact that m > 1 for ℓ = 2. Exactly the same way
as in the case r > 1, we obtain

(5.17) |Ae(∆)n| ∼
Ns(t, vm, t− 1− e)

∏t
i=2(ℓ

mi − ℓmi−1)

(rm1 · · · rmt)v1! · · · vm!ℓ
vm(vm−1)

2 +vm(t−vm)

tqn(log n)t−1

n
,

where Ns(t, u, s) denotes the number of matrices Γ of the form specified in
(5.16) such that rankΓ = s. The density de(∆) and dt,e are given by

(5.18) de(∆) =
Ns(t, vm, t− 1− e)

ℓ
vm(vm−1)

2 +vm(t−vm)
,
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and

(5.19) dt,e =

[
t∑

u=1

Ns(t, u, t− 1− e)

ℓ
u(u−1)

2 + u(t− u)

(
t

u

)
(m− 1)t−u

mt

](
1−

(m− 1

m

)t)−1

.
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