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ON BOUNDARY REGULARITY OF

HOLOMORPHIC CORRESPONDENCES

Nabil Ourimi

Abstract. Let D be an arbitrary domain in Cn, n > 1, and M ⊂ ∂D
be an open piece of the boundary. Suppose that M is connected and
∂D is smooth real-analytic of finite type (in the sense of D’Angelo) in

a neighborhood of M̄ . Let f : D → Cn be a holomorphic correspon-
dence such that the cluster set clf (M) is contained in a smooth closed
real-algebraic hypersurface M ′ in Cn of finite type. It is shown that if

f extends continuously to some open peace of M , then f extends as a
holomorphic correspondence across M . As an application, we prove that
any proper holomorphic correspondence from a bounded domain D in
Cn with smooth real-analytic boundary onto a bounded domain D′ in

Cn with smooth real-algebraic boundary extends as a holomorphic corre-
spondence to a neighborhood of D̄.

1. Introduction and main results

The problem of analytic continuation of holomorphic maps (or correspon-
dences) between real-analytic hypersurfaces is related to many fundamental
questions in several complex variables, such as boundary regularity of proper
holomorphic mappings (or correspondences), the regularity of CR maps and
the classification of domains in complex spaces. This problem has attracted a
lot of attention. For related results and without mentioning the entire list, we
refer the reader to [15], [16], [25], [19], and [23]. In this paper we consider the
problem of analytic continuation of holomorphic correspondences defined from
a domain D in Cn into Cn and sending in terms of cluster sets, a real-analytic
hypersurface M ⊂ ∂D into another real-algebraic hypersurface in Cn under the
assumption that the correspondence extends continuously to some open peace
of M . Our main theorem is the following:

Theorem 1. Let D be an arbitrary domain in Cn, n > 1, and M ⊂ ∂D be an
open piece of the boundary. Suppose that M is connected and ∂D is smooth real-
analytic of finite type in a neighborhood of M̄ . Let f : D → Cn be a holomorphic
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correspondence such that the cluster set clf (M) is contained in a smooth closed
real-algebraic hypersurface M ′ in Cn of finite type. If f extends continuously to
some open peace of M , then it extends as a holomorphic correspondence across
M .

By a smooth real-algebraic hypersurface we mean a real hypersurface in
Cn globally defined by a polynomial equation P (z, z̄) = 0. A similar result
was proved in [1] for holomorphic mappings. Note that we do not require
pseudoconvexity of M or M ′. The proof of Theorem 1 is based on the idea
of analytic continuation of holomorphic correspondences along Segre varieties
and the construction of a family of ellipsoids used in [14]. Theorem 1 is already
known if M and M ′ are closed smooth real-analytic hypersurfaces of finite
type and in additional f is continuous on M ([23]). For n = 2 the result
was proved in [24] in the real-analytic case under the additional condition that
clf−1(M ′) ⊂ M .

As an application of Theorem 1, one has the following:

Corollary 1. Let f : D → D′ be a proper holomorphic correspondence from
a bounded domain in Cn with smooth real-analytic boundary into a bounded
domain Cn, n > 1, with smooth real-algebraic boundary. Then f extends as a
holomorphic correspondence to a neighborhood of D̄.

Proof. If D is pseudoconvex which implies that D′ is also pseudoconvex, then
according to [23], f extends as a holomorphic correspondence to a neighborhood
of D̄. If D is not pseudoconvex, then f extends as a holomorphic correspon-
dence to a neighborhood of some boundary point of D and the result follows
from Theorem 1. □

In [23], R. Shafikov and K. Verma used the result of [23], where the continu-
ity of the correspondence was proved, to prove Corollary 1 in the case of proper
holomorphic correspondences between bounded smooth real-analytic pseudo-
convex domains. In the case of proper holomorphic mappings, the result was
proved by R. Shafikov [20].

The structure of this article is as follows : In Section 2 we give basic defini-
tions of holomorphic correspondences and Segre varieties. In Section 3 we study
analytic sets extending the graph of holomorphic correspondences. In Section 4
we study analytic continuation of germs of holomorphic correspondences along
Segre varieties. Finally, in Section 5 we present a proof of Theorem 1.

2. Notations, definitions and preliminaries

Let D, D′ be domains in Cn and A be a complex purely n-dimensional
subvariety contained in D ×D′. We denote by π1 : A → D and π2 : A → D′

the natural projections. When π1 is proper, (π2 ◦π−1
1 )(z) is a non-empty finite

subset of D′ for any z ∈ D and one may therefore consider the multi-valued
mapping f = π2 ◦ π−1

1 . Such a map is called a holomorphic correspondence
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between D and D′; A is said to be the graph of f . Since π1 is proper, in
particular it is a branched analytic covering. Then there exist an (n − 1)-
dimensional complex-analytic subset Vf of the graph of f and an integer m

such that π1 is an m-sheeted covering map from the set A\π−1
1 (π1(Vf )) onto

D\π1(Vf ). Hence, f(z) = {f1(z), . . . , fm(z)} for all z ∈ D\π1(Vf ) and the f j ’s
are distinct holomorphic functions in a neighborhood of z ∈ D\π1(Vf ). The
integer m is called the multiplicity of f and π1(Vf ) is its branch locus. One
says that f is irreducible if A is irreducible as an analytic set and proper if
both π1 and π2 are proper.

Given a holomorphic correspondence f : D → D′ with graph Γf ⊂ D ×D′,
one can find the system of canonical defining functions

ϕI(z, w) =
∑

|J|≤m

ϕIJ (z)w
J , |I| = m, (z, w) ∈ Cn × Cn,

where ϕIJ(z) ∈ O(D) and Γf is precisely the set of common zeros of the
functions ϕI(z, w) (see [6] for details). Let zo ∈ ∂D be a boundary point. We
say that f extends continuously at zo if and only if the holomorphic functions
ϕIJ extend continuously at zo. We say that Γf extends as an analytic set to
U × Cn, where U is a neighborhood of zo, if there exists a closed complex-
analytic set A ⊂ U×Cn of pure dimension n, which may possibly be reducible,
such that, Γf ∩ {(D ∩ U) × Cn} ⊂ A. If, in addition, the natural projection
π : A → U is proper, we say that f extends as a holomorphic correspondence
to a neighborhood U of zo.

The extension of f as a holomorphic correspondence, at first, usually pro-
vided only a multi-valued extension which may be best interpreted as an ana-
lytic set extending the graph of f .

We will write z = (z1,
′z) ∈ C × Cn−1 for a point z ∈ Cn (n > 1). Let M

be a smooth real-analytic hypersurface that contains the origin. By ρ(z, z̄) we
denote a real-analytic defining function of M near 0. In a small neighborhood
U of the origin, the complexification ρ(z, w̄) of ρ is well-defined by means of a
convergent power series in U × U . For w ∈ U , the associated Segre variety is
defined as

Qw = {z ∈ U : ρ(z, w̄) = 0}.
By the implicit function theorem, it is possible to choose neighborhoods U1 ⊂⊂
U2 of the origin such that for any w ∈ U1, Qw is a closed, complex hypersurface
in U2 and

(2.1) Qw = {(z1, ′z) ∈ U2 : z1 = h(′z, w̄)},

where h(′z, w̄) is holomorphic in ′z and antiholomorphic in w. Following the
terminology of [10], U1 and U2 are usually called a standard pair of neighbor-
hoods of 0. It can be shown that Qw is independent of the choice of the defining
function.
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We denote by S = S(U) the set of Segre varieties {Qw, w ∈ U} and λ the
so-called Segre map defined by

λ : U → S
w 7→ Qw.

Let Iw := {z ∈ U : Qw = Qz} be the fiber of λ over Qw. For any w ∈ M , the
set Iw is a complex variety of M . We say that M is essentially finite if for any
w ∈ M there exists a neighborhood Uw of w such that Iw ∩ Uw = {w}. The
set S admits the structure of a complex-analytic variety of finite dimension
such that the map λ is a finite antiholomorphic branched covering. The set Iw
contains at most as many points as the sheet number of λ. We next list some
important properties of Qw and Iw (see e.g. [8] and [13]).

(a) z ∈ Qw ⇐⇒ w ∈ Qz.

(b) z ∈ Qz ⇐⇒ z ∈ M .

(c) Iw =
∩
{Qz : z ∈ Qw}.

(d) The Segre map λ : w 7→ Qw is locally one-to one near strictly pseudo-
convex points of M .

Let f : D → D′ be a holomorphic correspondence between domains in Cn

with smooth real-analytic boundaries which extends as a holomorphic corre-
spondence F to a neighborhood of a point p ∈ ∂D. Assume that p = 0, 0′ ∈
f(0) and choose standard neighborhoods U2 ⊃⊃ U1 ∋ 0 and U ′

2 ⊃⊃ U ′
1 ∋ 0′.

Then we have the following invariance property for the Segre variety under F
(see [24]):

(2.2) For all (w,w′) ∈ graph(F ) ∩ (U1 × U ′
1), F (Qw) ⊂ Q′

w′ .

This means that any branch of F maps any point from Qw to Q′
w′ for any point

w′ ∈ F (w).

Finally, recall that if f : D → Cn is a holomorphic correspondence and
M ⊂ ∂D, then the cluster set clf (M) is defined as:

clf (M) = {w ∈ Cn ∪ {∞} : lim
j→∞

dist(zj ,M) = 0 and

lim
j→∞

dist(f(zj), w) = 0 for some sequence {zj} in D}.

3. Analytic sets extending the graph of holomorphic
correspondences

In this section, we study analytic sets extending the graph of holomorphic
correspondences. More precisely we prove the following:

Theorem 2. Let D be an arbitrary domain in Cn, n > 1, and f : D →
Cn be a holomorphic correspondence. Let M ⊂ ∂D be an open piece of the
boundary. Suppose that ∂D is smooth real-analytic and nondegenerate in an
open neighborhood of M̄ and the cluster set clf (M) is contained in a closed
smooth real-algebraic nondegenerate hypersurface M ′ ⊂ Cn. If the graph of f
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extends as an analytic set to U ×Cn, where U is a neighborhood of some point
p ∈ M , then f extends as a holomorphic correspondence to a neighborhood of
p.

Recall that a hypersurface is called nondegenerate if it contains no complex-
analytic set with positive dimension. Theorem 2 was proved for holomorphic
mappings in the case of real-analytic hypersurfaces (see [9]). Related results
were proved in [2] and in [17]. The methods of proof of all these results are
based on the method of Segre varieties. The following example (appeared in
[9]) shows that the assumption of the nondegeneracy of M and M ′ can not be
dropped.

Example. Let D = {(z1, z2) ∈ C2 : Re(z2) + |z1|2 < 0} and D′ = {(z′1, z′2) ∈
C2 : Re(z′2) + |z′1|2|z′2|2 < 0}. The map f : (z1, z2) 7→ (z1/z2, z2) is a biholo-
morphism from D to D′. The graph of f is contained in {(z1, z2, z′1, z′2) ∈
C2 × C2 : z′1z

′
2 − z1 = 0, z′2 = z2}, then f extends as an analytic set to a

neighborhood of (0, 0′). But 0′ ∈ clf (0) and ∞ ∈ clf (0). This shows that f
cannot be extended as a holomorphic correspondence to a neighborhood of 0
(since it is not continuous at 0). Note that in this example the boundary of D′

is degenerate (it contains the complex line z′2 = 0).

3.1. Proof of Theorem 2

Without loss of generality, we may assume that p = 0 and 0 is not in the
envelope of holomorphy of D. Let U be a neighborhood of 0 and A ⊂ U × Cn

be the closed, complex-analytic set of dimension n extending the graph Γf of f .
We may assume that A is irreducible, as otherwise consider only the irreducible
component containing the graph of f . Let π1 : A → U be the coordinate
projection to the first component and let E = {z ∈ U : dim π−1

1 (z) ≥ 1}. We
denote by F : U\E → Cn the multiple-valued map corresponding to A; that
is,

F (w) = {w′ : (w,w′) ∈ A}.
We denote by SF its branch locus (i.e., for z ∈ U\E, z ∈ SF if the coordinate
projection π1 is not locally biholomorphic near π−1

1 (z)). The crucial point in
the proof is to show that π−1

1 (0) ∩ E = ∅ (i.e., π−1
1 (0) is discrete). We denote

U− = D ∩ U and U+ = U\D̄. We begin by showing that A has points lying
over U+.

Lemma 1. A ∩ (U+ × Cn) ̸= ∅.
Proof. We follow the ideas of [17]. By contradiction assume that A ∩ (U+ ×
Cn) = ∅. It is clear that A ̸⊂ (M ∩ U) × Cn. Let L be a complex line in Cn

which contains 0 and is transverse to M such that Γf ∩ {(U− ∩ L)×Cn} ≠ ∅.
We may choose U such that U− ∩ L is connected. Let Ã be the irreducible
component of A ∩ {(U ∩ L) × Cn} containing Γf ∩ {(U− ∩ L) × Cn} and 0′

be a point in clf (0). The analytic set Ã has pure complex dimension 1 and it

contains (0, 0′). Moreover, Ã ̸⊂ (M ∩ U)× Cn. We consider two cases:
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- If Ã ∩ {(M ∩U)×Cn} is discrete, then by the continuity principle we deduce
that (0, 0′) is in the envelope of holomorphy of U− × Cn.

- If Ã ∩ {(M ∩ U) × Cn} is not discrete, then no open subset of Ã can be

contained in Ã ∩ {(M ∩ U) × Cn}. Now, the strong disc theorem shows that
(0, 0′) is again in the envelope of holomorphy of U− × Cn.

Hence, 0 is in the envelope of holomorphy of D. Indeed, if g ∈ O(U−), we
may regard it as a function g̃ ∈ O(U−×Cn). Then g̃ extends to a neighborhood
of (0, 0′) and the uniqueness theorem shows that the extension of g̃ is also
independent of the variables z′ ∈ Cn. It follows that g extends holomorphically
across 0. This is a contradiction; since 0 is not in the envelope of holomorphy
of D. □

As a consequence of Lemma 1, we deduce the following result.

Lemma 2. There exists an open set Γ ⊂ M ∩ U such that f extends as a
holomorphic correspondence to a neighborhood of U− ∪ Γ, and the graph of f
near any point (z, z′), z ∈ Γ and z′ ∈ f(z), is contained in A. Moreover, 0 ∈ Γ̄.

Proof. Let VF = {(z, z′) ∈ A : z ∈ SF }. Since the complex dimension of
VF is at most n − 1 (because A is irreducible and the projection π1 is locally
biholomorphic in an open set of A), then A\VF is connected by paths. Without
loss of generality we may assume that M ∩ U = ∂D ∩ U . Let (a, b) ∈ Γf ∩
(A\VF ) ∩ (U− × Cn) and by Lemma 1 choose (a′, b′) ∈ (A\VF ) ∩ (U+ × Cn),
and connect them by a path γ ⊂ A\VF . It follows that π1(γ) ∩M ̸= ∅. Let zo
be the point where π1(γ) first intersects M . Then f extends as a holomorphic
correspondence along π1(γ) from a to zo and the graph of f over this part
of π1(γ) is contained in A\VF . It follows that zo is a point of holomorphic
extendability as a correspondence for f . The second part follows from the fact
that U may be chosen arbitrarily small. □

The proof of Theorem 2 uses some ideas of R. Shafikov developed in [19] to
study the analytic continuation of holomorphic correspondences and equiva-
lence of domains. First, we need the following lemma whose proof is deferred
until the end of this section.

Lemma 3. There exists a holomorphic change of variables such that in the
new coordinates Q0 ̸⊂ E.

As a consequence, we deduce the following:

Lemma 4. π−1
1 (0) is discrete.

Proof. It suffices to show that 0 ̸∈ E. In view of Lemma 3, we may assume
that Q0 ̸⊂ E. By contradiction, suppose that 0 ∈ E. It follows that there exist
a point b ∈ Q0 and a small neighborhood Ub ∋ b such that Ub ∩ E = ∅. We
may choose U and Ub so small such that for any z ∈ U , the set Qz ∩ Ub is
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non-empty and connected. Let Σ = {z ∈ U : Qz ∩ Ub ⊂ SF }. Following the
ideas in [8] and [10], we define

X = {(w,w′) ∈ (U\Σ)× Cn : F (Qw ∩ Ub) ⊂ Q′
w′}.

We follow the convention of using the right prime to denote the objects in the
target domain. For instance, Q′

w′ will mean the Segre variety of w′ with the
respect to the hypersurface M ′.

We prove the following properties of X.

Claim 1.
i) X is not empty;

ii) X is a complex-analytic set in (U\Σ)× Cn;

iii) X is closed in (U\Σ)× Cn;

iv) Σ× Cn is a removable singularity for X.

Proof. i) According to Lemma 2, there exists a sequence {aj} ⊂ Γ\(E ∪ Σ)
such that aj → 0 as j → ∞ and f extends as a holomorphic correspondence
in a neighborhood of each aj . It follows from the invariance property of Segre
varieties under holomorphic correspondences [24] that for every aj there exists
a neighborhood Uj ∋ aj such that F (Qaj ∩ Uj) ⊂ Q′

a′
j
for all a′j ∈ F (aj). This

implies that F (Qaj ∩ Ub) ⊂ Q′
a′
j
. Thus, (aj , a

′
j) ∈ A and therefore X ̸= ∅.

ii) Let (w,w′) ∈ X. Consider an open simply connected set Ω ⊂ Ub\SF such
that Qw ∩ Ω ̸= ∅. The branches of F are globally defined in Ω. Since Qw ∩ Ub

is connected, the inclusion F (Qw ∩ Ub) ⊂ Q′
w′ is equivalent to

F j(Qw ∩ Ω) ⊂ Q′
w′ , j = 1, . . . ,m,

where the F j denote the branches of F in Ω. We denote by P ′(w′, w̄′) a defining
polynomial function of M ′. The inclusion F j(Qw ∩ Ω) ⊂ Q′

w′ , j = 1, . . . ,m
can be expressed as

P ′(F j(z), w̄′) = 0 for any z ∈ Qw ∩ Ω, j = 1, . . . ,m.

We can choose Ω in the form Ω = Ω1 × ′Ω ⊂ C× Cn−1 such that

Qw = {(k(′z, w̄), ′z), ′z ∈ ′Ω}
and

(3.1) P ′(F j(k(′z, w̄), ′z) , w̄′) = 0 for any ′z ∈ ′Ω.

Thus, X is defined by an infinite system of holomorphic equations in (w̄, w̄′).
By the Noetherian property of the ring of holomorphic functions, we can choose

finitely many points ′z
1
, . . . , ′z

m
so that (3.1) can be written as a finite system

(3.2)
∑

|J|≤d′

αk
J(w)w

′J = 0,

where k = 1, . . . ,m, d′ is the degree of P ′ in w′ and αk
J are holomorphic

functions in w. Thus, X is a complex-analytic set in (U\Σ)× Cn.
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iii) The set X is closed in (U\Σ)× Cn. Indeed; let (wj , w′j) be a sequence
in X that converges to (wo, w

′
o) ∈ (U\Σ) × Cn as j → ∞. Since Qwj → Qwo

and Q′
w′j → Q′

w′
o
, from the inclusion F (Qwj ∩ Ub) ⊂ Q′

w′j we obtain

F (Qwo ∩ Ub) ⊂ Q′
w′

o
,

which implies that (wo, w
′
o) ∈ X and thus, X is a closed set.

iv) Now, let us show that Σ × Cn is a removable singularity for X. Let
t ∈ Σ. It follows that X̄ ∩ ({t} × Cn) ⊂ {t} × {z′ : F (Qt ∩ Ub) ⊂ Q′

z′}.
If w′ ∈ F (Qt ∩ Ub) ⊂ Q′

z′ , then z′ ∈ Q′
w′ . Since dimCQ

′
w′ = n − 1, then

{z′ : F (Qt ∩ Ub) ⊂ Q′
z′} has dimension at most 2n − 2 and X̄ ∩ (Σ × Cn)

has 2n-dimensional measure zero. Now, Bishop’s theorem can be applied to
conclude that Σ× Cn is a removable singularity for X. □

Now, we continue with the proof of Lemma 4. According to Lemma 2,
there exists a sequence {aj} ⊂ Γ\(E ∪ Σ) such that aj → 0 as j → ∞ and f
extends as a holomorphic correspondence in a neighborhood of each aj . For
small neighborhoods Uj ∋ aj we have:

(3.3) X|Uj×Cn = A|Uj×Cn .

We denote by X̄ the closure of X in U×Cn. Without loss of generality we may
assume that X̄ is irreducible. In view of (3.3) and by the uniqueness theorem

(see for instance [6]) we deduce that X̄ = A. Let F̂ be the multiple-valued

mapping corresponding to X̄. By construction, for any a′ ∈ F̂ (0), F̂ (0) = I ′a′ .

Since 0′ ∈ F̂ (0) ∩ M ′, it follows that F̂ (0) ⊂ M ′. Therefore F̂ (0) is discrete,
since M ′ is nondegenerate. This contradicts the fact that 0 ∈ E and completes
the proof of Lemma 4. □

3.2. Conclusion of the proof of Theorem 2

In view of Lemma 4, there exist neighborhoods U0 of 0 and U ′ of M ′ such
that U0 ∩ E = ∅ and A ∩ ({0} × ∂U ′) = ∅. We may shrink U0 such that
A ∩ (U0 × ∂U ′) = ∅; as otherwise, there exists a sequence (zj , z

′
j)j in A such

that (zj)j converges to 0 and (z′j)j converges to z′o ∈ ∂U ′. This implies that
(0, z′o) ∈ A and z′o ∈ ∂U ′: a contradiction. This shows that A∩(U0×U ′) defines
a holomorphic correspondence from U0 to U ′, extending the correspondence f
near the origin. □

Now, we complete this section with a proof of Lemma 3.

Proof of Lemma 3. The ideas of the proof were given in [19]. Assume that
Q0 ⊂ E. From Proposition 4.1 of [18] there exists a point t ∈ Γ\E such that

Q0 ∩ Qt ̸= ∅. Let h : Ũ → Cn be the germ of the correspondence f defined
in a neighborhood Ũ of t. We shrink Ũ and choose V in such a way that for
any w ∈ V , the set Qw ∩ Ũ is connected. Observe that if V is small enough,
then Qw ∩ Ũ ̸= ∅ for any w ∈ V , as w ∈ Qt implies t ∈ Qw. Note that V is a
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neighborhood of Qt ∩ Ũ ; since if w ∈ Qt, then t ∈ Qw and Qw ∩ Ũ ̸= ∅. Let
Σ = {z ∈ V : Qz ∩ Ũ ⊂ Sh}, where Sh is the branch locus of h. We define

X = {(w,w′) ∈ (V \Σ)× Cn : h(Qw ∩ Ũ) ⊂ Q′
w′}.

As in Claim 1, X extends as a complex analytic set in (V \Σ)×Cn, and Σ×Cn

is a removable singularity for X ⊂ V ×Cn. We denote also by X this extension.
Since M ′ is algebraic X extends to a complex analytic set in V ×Pn. We denote
this variety by X̄. Clearly, the restriction of X̄ to V × (Pn\H0) = V × Cn

coincides with the set defined by (3.1), where H0 = {t0 = 0} is the hyperplane
at infinity. Let π : X̄ → V and π′ : X̄ → Pn be the natural projections.
According to [19] (Lemma 3), h extends as a holomorphic correspondence to

V \(Λ1∪Λ2), where Λ1 = π(π′−1
(H0)) and Λ2 = π{(w,w′) ∈ X̄ : dim π−1(w) ≥

1}. It is easy to see that Λ1 is a complex manifold of dimension at most
n − 1, and according to [18] (Proposition 3.3), Λ2 is a complex-analytic set
of dimension at most n − 2. By considering dimension, we may assume that
Q0 ∩ V ̸⊂ Λ2. Also, we may assume that Q0 ∩ V ̸⊂ Λ1; since otherwise we can
perform a linear fractional transformation such thatH0 is mapped onto another
complex hyperplane H ⊂ Pn with H ∩ M ′ = ∅. Thus, by the holomorphic
extension along Qt we can find points in Q0 where h extends as a holomorphic
correspondence. This implies that in the new coordinates Q0 ̸⊂ E. □

4. Extension along Segre varieties

The propagation of analyticity of holomorphic correspondences along Segre
varieties is given in the following proposition.

Proposition 1. Let M be a smooth real-analytic, essentially finite hypersurface
in Cn, n > 1, and let U1 ⊂⊂ U2 be a standard pair of neighborhoods of a point
a ∈ M . Let f : Ua → Cn be a germ of a holomorphic correspondence such that
f(Ua∩M) ⊂ M ′, where Ua is an arbitrary small neighborhood of a, Ua ⊂ U1 and
M ′ ⊂ Cn is a smooth real-algebraic essentially finite hypersurface. Then there
exist V a neighborhood of Qa ∩ U1 and an analytic set Λ ⊂ V , dimCΛ ≤ n− 1
such that for any b ∈ (Qa ∩U1)\Λ, the graph of f extends as an analytic set to
W ×Cn, where W is a neighborhood of the connected component of Qb∩M ∩U1

containing a.

Proof. The proof is in two steps. First, to construct a correspondence in a
neighborhood of (Qa∩U1)\Λ and second to extend the graph of f to an analytic
set as in Proposition 1.

Step 1. We shrink Ua and choose V a neighborhood of Qa ∩ U1 in such a way
that for any w ∈ V , the set Qw ∩ Ua is connected. Observe that if V is small
enough, then Qw ∩ Ua ̸= ∅ for any w ∈ V , as w ∈ Qa implies a ∈ Qw. Let
Sf ⊂ Ua be the branch locus of f and let Σ = {z ∈ V : Qz ∩ Ua ⊂ Sf}. Since
M is essentially finite and dimCSf = n − 1, by shrinking Ua if necessary, we
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may assume that Σ is a finite set. We define

X = {(w,w′) ∈ (V \Σ)× Cn : f(Qw ∩ Ua) ⊂ Q′
w′}.

We would like to have Qw ∩Ua connected for any w ∈ V to avoid ambiguity in
the condition f(Qw ∩ Ua) ⊂ Q′

w′ ; since different components of Qw ∩Ua could
be mapped a priori to different Segre varieties. Similar to the proof of Claim 1,
one can show that X is a complex analytic set in (V \Σ)×Cn, and that Σ×Cn

is a removable singularity for X ⊂ V ×Cn. For simplicity, we denote again by
X the closure of X in V × Cn. By the invariance property of Segre varieties
(see (2.2)), X extends the graph of f|V ∩Ua

(the restriction of f to V ∩ Ua).
From the algebraicity of M ′, the set X extends to an analytic set in V × Pn.
This extension will be denoted by X̄. Let π : X̄ → V and π′ : X̄ → Pn be

the natural projections . We define the following sets : Λ1 = π(π′−1
(H0)) and

Λ2 = π{(w,w′) ∈ X̄ : dim π−1(w) ≥ 1}. Here H0 ⊂ Pn is the hyperplane at
infinity. Note that Λ1 is a complex manifold of dimension at most n− 1 in Cn

and Λ2 is a complex analytic set of dimension at most n−2 (see Proposition 3.3
in [18]). The projection π is proper; since Pn is compact. Let Λ = Λ1∪Λ2. Now,
it is clear that the restriction (π′ ◦ π−1)|V \Λ is a holomorphic correspondence

extending f|V ∩Ua
.

Step 2. Consider the restriction of the extended correspondence to some neigh-
borhood Ub of b, b ∈ (Qa ∩ U1)\Λ and Ub ⊂ V . Let F : Ub → Cn be the
corresponding multiple-valued mapping and W be a neighborhood of the con-
nected component of Qb∩M ∩U1 that contains a (we choose W and we shrink
Ub so that for all w ∈ W , Qw ∩ Ub is non-empty and connected). We denote
by SF the branch locus of F (i.e., z ∈ SF if the coordinate projection π is not
locally biholomorphic near π−1(z)) and let Σ = {w ∈ W : Qw ∩ Ub ⊂ SF }.
Consider the set

X∗ = {(w,w′) ∈ (W\Σ)× Cn : F (Qw ∩ Ub) ⊂ Q′
w′}.

Similar to the proof of Claim 1, one can show that X∗ is a complex analytic set
in (W\Σ)×Cn, and that Σ×Cn is a removable singularity for X∗ ⊂ W ×Cn.
We denote by X̄∗ the closure of X∗ in W × Cn.

To show that X̄∗ contains the graph of f|W∩Ua∩V , it suffices to use the following
lemma.

Lemma 5. X̄∗ ∩ [(W ∩ Ua ∩ V )× Cn] = X ∩ [(W ∩ Ua ∩ V )× Cn].

Proof. We adapt the proof of Lemma 1 in [20] to our situation. To simplify the

notations we denote W ∩ Ua ∩ V by Ũa. We need the following observation.

Claim 2. For z ∈ Ũa and Qz ∩ Ũa ̸= ∅, the following inclusions are equivalents:
(i) f(Qz ∩ Ũa) ⊂ Q′

z′ .

(ii) F (Qz ∩ Ũa) ⊂ Q′
z′ .

(iii) F (Qz ∩ Ub) ⊂ Q′
z′ .
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Proof of Claim 2. (i) ⇒ (ii) Let w ∈ Qz ∩ Ũa, w
′ ∈ F (w) and Z ′ ∈ f(z). From

the definition of F , it follows that f(Qw ∩ Ũa) ⊂ Q′
w′ . Then z ∈ Qw implies

that f(z) ⊂ Q′
w′ . Consequently, w′ ∈ Q′

Z′ . Since (w,w′) ∈ X was arbitrary,

it follows that F (Qz ∩ Ũa) ⊂ Q′
Z′ . From (i) and by the invariance property of

Segre varieties, Q′
Z′ = Q′

z′ . Hence, F (Qz ∩ Ũa) ⊂ Q′
z′ .

(ii) ⇒ (iii) Suppose that F (Qz ∩ Ũa) ⊂ Q′
z′ and Z ′ ∈ f(z). Then z′ ∈ I ′Z′ .

Let w ∈ Qz ∩Ub and w′ ∈ F (w). From the definition of F , f(Qw ∩ Ũa) ⊂ Q′
w′ .

In particular, for z ∈ Qw ∩ Ũa, f(z) ⊂ Q′
w′ . Consequently, w′ ∈ Q′

z′ ∩Q′
Z′ . It

follows that F (Qz ∩ Ub) ⊂ Q′
Z′ = Q′

z′ .
(iii) ⇒ (i) Suppose now that F (Qz ∩ Ub) ⊂ Q′

z′ . Let w ∈ Qz ∩ Ub and
w′ ∈ F (w). Therefore, w′ ∈ Q′

z′ . From the definition of F , f(Qw ∩Ua) ⊂ Q′
w′ .

In particular, f(z) ⊂ Q′
w′ and then w′ ∈ Q′

Z′ for all Z ′ ∈ f(z) . Consequently,
w′ ∈ Q′

z′ ∩Q′
Z′ for any Z ′ ∈ f(z). Since the dimension of F (Qz∩Ub) is equal to

2n− 2, then z′ ∈ I ′Z′ for all Z ′ ∈ f(z). This proves that f(Qz ∩ Ũa) ⊂ Q′
z′ . □

Now, we continue the proof of Lemma 5. Let (z, z′) ∈ X∗∩ (Ũa×Cn). Then

F (Qz ∩ Ub) ⊂ Q′
z′ . In view Claim 2, f(Qz ∩ Ũa) ⊂ Q′

z′ . This implies that

(z, z′) ∈ X. Conversely, if (z, z′) ∈ X ∩ (Ũa ∩ Cn), then f(Qz ∩ Ũa) ⊂ Q′
z′ .

In view of Claim 2, F (Qz ∩ Ub) ⊂ Q′
z′ . Hence, (z, z′) ∈ X∗. This finishes the

proof of Lemma 5. □

By using Proposition 1 and Proposition 4.1 in [18] we establish the following:

Proposition 2. Let M ⊂ U ⊂ Cn and M ′ ⊂ U ′ ⊂ Cn, n > 1, be closed hyper-
surfaces of finite type in some domain U respectively U ′ in Cn. We assume that
M (resp. M ′) divides the domain U (resp. U ′) into two connected components
U+ and U− (resp. U ′±). Assume additionally that M is smooth real-analytic
and M ′ is smooth real-algebraic. Further, suppose that Γ ⊂ M is a connected
open set and ∂Γ ∩M is a smooth generic submanifold. Let f : U− → U ′ be a
holomorphic correspondence that extends continuously up to Γ and maps Γ to
M ′ and let p be a point in ∂Γ = Γ̄\Γ. Then there exists a neighborhood Up ∋ p
in Cn such that the graph of f extends as an analytic set to Up × Cn.

Proof. According to [23], f extends as a holomorphic correspondence in a neigh-
borhood of Γ. Without loss of generality we may assume that f is not constant.
Let U1 ⊂⊂ U2 be a standard pair of neighborhoods of p. According to [18],
there exists an open subset ω ⊂ Qp ∩ U1 such that for all b ∈ ω, Qb ∩ Γ ̸= ∅.
Moreover, there exists a non-constant closed path γ ⊂ (Qb ∩ Γ) ∪ {p} with
the end point at p. In view of [18] (Remark 2 following Proposition 4.1) Qb

intersects Γ transversally. Let Λ = Λ1 ∪ Λ2 be the set defined in Proposi-
tion 3.1. Recall that dimCΛ2 ≤ n − 2 and dimCΛ1 ≤ n − 1. We may choose
the triplet (b, γ, a) such that b ∈ ω\Λ2 and a ∈ γ ⊂ Qb ∩ Γ. Notice that
dimC(Qa ∩ ω) = n− 2 and b ∈ Qa ∩ ω. Since b ∈ Qa ∩ ω, then Qa ∩ ω ̸⊂ Λ2.
Also, we may exclude the case when Qa ∩ ω ⊂ Λ1. Indeed; if Qa ∩ ω ⊂ Λ1,
we can perform a linear-fractional transformation in Pn such H0 is mapped
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onto another complex hyperplane H ⊂ Pn with H ∩M ′ = ∅. Hence, we may
assume that (Qa ∩ω) ̸⊂ Λ and if necessary, we may replace b by another point
in (Qa ∩ ω)\Λ. Now, the result follows from Proposition 1. □

5. Proof of Theorem 1

Let Mh be the set of points z ∈ M , where f extends as a holomorphic
correspondence to a neighborhood of z. According to [23], Mh is not empty.
It is open by construction. To prove Theorem 1, it suffices to show that Mh

is closed in M . We argue by contradiction. Assume that M̄h ̸= Mh and let
q ∈ ∂Mh = M̄h\Mh. We follow the idea in [22], used also in [1]. Since M is
globally minimal, there exists a CR-curve γ (i.e., the tangent vector to γ at
any point is contained in the complex tangent to M) passing through q and
entering Mh. We will use the construction of a family of ellipsoids used by
Merker and Porten [14].
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Figure 1. Construction of ellipsoids

After shortening γ we may assume that γ is a smoothly embedded segment.
Then γ can be described as a part of an integral curve of some non-vanishing
smooth CR vector field L (i.e., section of T cM) near q. Integrating L, we
obtain a smooth coordinate system (t, s) ∈ R×R2n−2 on M such that for any
fixed s0 the segments (t, s0) are contained in the trajectories of L. After a
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translation, we may assume that 0 ∈ γ ∩Mh and 0 is close to q. For ϵ > 0 and
τ > 0 we define the family of ellipsoids on M centered at 0 by

Eτ = {(t, s) : |t|2/τ + |s|2 < ϵ}.

Observe that every ∂Eτ is transverse to the trajectories of L out off the set
Υ = {(0, s) : |s|2 = ϵ}. So, ∂Eτ is generic at every point except the set Υ.
Note that Υ is contained in Mh. Fix ϵ > 0 so small such that for some τ0 > 0
the ellipsoid Eτ0 is compactly contained in Mh. Let τ1 be the smallest positive
number such that f does not extend holomorphically to some point b ∈ ∂Eτ1 .
Note that τ1 > τ0 and b may be different from q. The contradiction is to show
that f extends as a holomorphic correspondence to a neighborhood of b. Near
b, ∂Eτ1 is a smooth generic manifold of M ; since the non-generic points of
∂Eτ1 are contained in Υ, which is contained in Mh. By Proposition 2, there
exists a neighborhood Ub ∋ b in Cn such that the graph of f extends as an
analytic set to Ub × Cn. In view of Theorem 2, f extends holomorphically to
a neighborhood of b. This contradiction proves that Mh = M and finishes the
proof of Theorem 1. □
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