DOI QR코드

DOI QR Code

부피가 다른 두 유체의 효과적인 유동제어를 위한 미세채널

Microchannels for the Flow Control of Two Fluids with Different Volumes

  • 라문우 (포항공과대학교 기계공학과) ;
  • 호재윤 (포항공과대학교 기계공학과) ;
  • 김동성 (포항공과대학교 기계공학과)
  • La, Moon-Woo (Dept. of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Ho, Jae-Yun (Dept. of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Kim, Dong-Sung (Dept. of Mechanical Engineering, Pohang University of Science and Technology)
  • 투고 : 2011.08.31
  • 심사 : 2011.10.17
  • 발행 : 2012.01.01

초록

본 연구에서는 부피가 다른 두 유체의 효과적인 유동제어를 위하여 Stokes 유동 방정식을 기반으로 설계된 미세채널을 제안한다. 부피가 다른 두 유체가 압력 구동에 의하여 주입구를 통과하는 과정에서, 두 유동이 동시에 만나 주어진 부피비를 유지하며 흘러나간 후에 일시에 끝날 수 있도록 주입구의 폭과 길이를 조절하였다. 디자인된 미세채널은 비압축성, 뉴턴 유체의 과도상태 유동에 대한 전산유체역학 모사를 수행하였다. 또한, 소프트리소그래피를 통해 미세유체칩을 제작하고, 압력 구동에 의한 부피가 다른 두 유체의 유동 특성을 평가하였다.

In this paper, microchannels for the flow control of two fluids with different volumes have been designed, fabricated, and verified. The dimensions of the inlets were determined based on the Stokes equation in order to realize that the flow of the two fluids meet at the same time, and to maintain a certain configuration when the flows passed through each inlet channel. The designed microchannels were confirmed using computational fluid dynamics simulation for the incompressible, Newtonian, and transient flows. In addition, a microfluidic system containing the designed microchannels was fabricated by soft lithography, and the pressure-driven flows of the two fluids were characterized by microfluidic experiments.

키워드

참고문헌

  1. Reyes, D.R., Iossifidis, D., Auroux, P.-A. and Manz, A., 2002, "Micro Total Analysis Systems. 1. Introduction, Theory, and Technology," Anal. Chem., Vol. 74, pp. 2623-2636. https://doi.org/10.1021/ac0202435
  2. Auroux, P.-A., Iossifidis, D., Reyes, D.R. and Manz, A., 2002, " Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications," Anal. Chem., Vol. 74, pp. 2637-2652. https://doi.org/10.1021/ac020239t
  3. Paguirigan, A. and Beebe, D.J., 2006, "Gelatin Based Microfluidic Devices for Cell Culture," Lab Chip, Vol. 6, pp. 407-413. https://doi.org/10.1039/b517524k
  4. The Korean Society for Laboratory Medicine, 1994, Laboratory Medicine (Clinical Pathology), Korea Medical Book Publisher, Seoul, pp. 3-31.
  5. Alberts, B., 2004, Essential Cell Biology (2nd Ed.), Garland Science, New York, pp. 611-734.
  6. Ni, M., Tong, W. H., Choudhury, D., Rahim, N. A., Iliescu, C. and Yu, H., 2009, "Cell Culture on MEMS Platforms: A Review," Int. J. Mol. Sci., Vol. 10, pp. 5411-5441. https://doi.org/10.3390/ijms10125411
  7. Kim, D.S., Lee, S.W., Kwon, T.H. and Lee, S.S., 2004, "A Barrier Embedded Chaotic Micromixer," J. Micromech. Microeng., Vol. 14, pp. 798-805. https://doi.org/10.1088/0960-1317/14/6/006
  8. Park, J. M., Seo, K. D. and Kwon, T. H., 2010, "A Chaotic Micromixer Using Obstruction-Pairs," Journal of Micromechanics and Microengineering, Vol. 20, pp. 15023-15033. https://doi.org/10.1088/0960-1317/20/1/015023
  9. Kim, D. S., Lee, S. H., Kwon, T. H. and Ahn, C. H., 2005, "A Serpentine Laminating Micromixer Combining Splitting/Recombination and Advection," Lab Chip, Vol. 5, pp. 739-747. https://doi.org/10.1039/b418314b
  10. Jayarj, S., Kang, S. and Suh, Y. K., 2007, "A Review on the Analysis and Experiment of Fluid Flow and Mixing in Micro-Channels," JMST, Vol. 21, pp. 536-548.
  11. Bang, H., Lee, W. G., Park, J., Yun, H., Min, J. and Han, D. -C., 2009, "Optimal Microchannel Design Using Genetic Algorithms," JMST, Vol. 23, pp. 1500-1507. https://doi.org/10.1007/s12206-009-0403-7
  12. Jo, B.-H., Van Lerberghe, L.M., Motsegood, K.M., and Beebe, D.J., 2000, "Three-Dimensional Microchannel Fabrication in Polydimethylsiloxane (PDMS) Elastomer," J. Microelectromech. Syst., Vol. 9, pp. 76-81. https://doi.org/10.1109/84.825780