DOI QR코드

DOI QR Code

수직다관절 로봇의 중력보상장치 최적설계

Optimal Design of Passive Gravity Compensation System for Articulated Robots

  • 박진균 (현대중공업 기술개발본부 기계전기연구소) ;
  • 이재영 (현대중공업 기술개발본부 기계전기연구소) ;
  • 김상현 (현대중공업 기술개발본부 기계전기연구소) ;
  • 김성락 (현대중공업 기술개발본부 기계전기연구소)
  • Park, Jin-Gyun (Electro-Mechanical Research Institute, R&D Division, Hyundai Heavy Industries, Co. Ltd.) ;
  • Lee, Jae-Young (Electro-Mechanical Research Institute, R&D Division, Hyundai Heavy Industries, Co. Ltd.) ;
  • Kim, Sang-Hyun (Electro-Mechanical Research Institute, R&D Division, Hyundai Heavy Industries, Co. Ltd.) ;
  • Kim, Sung-Rak (Electro-Mechanical Research Institute, R&D Division, Hyundai Heavy Industries, Co. Ltd.)
  • 투고 : 2011.05.25
  • 심사 : 2011.11.03
  • 발행 : 2012.01.01

초록

본 논문에서는 수직다관절 로봇에 걸리는 중력 토크를 보상하는데 주로 사용되는 스프링 중력보상장치의 최적설계에 대하여 기술하였다. 스트레스, 좌굴, 피로 조건과 같은 스프링 설계에 대한 다수의 비선형 제약 조건을 반영하면서, 동시에 계산 시간을 줄이기 위하여, SQP(Sequential Quadratic Programming)를 적용하였다. 또한 정수해를 가져야 하는 설계 변수를 반영하기 위하여, Continuous Relaxation 방법을 사용하였다. 시뮬레이션을 통하여 설계된 중력보상 장치가 주요 작업 영역에서 추가의 무게 증가 없이 중력 보상 성능이 효과적으로 높아짐을 입증하였다.

In this paper, the optimal design of a spring-type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer-valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.

키워드

참고문헌

  1. Segla, S., Kalker-Kalkman, C. M. and Schwab, A. L., 1988, "Static Balancing of a Robot Mechanism with the aid of a Genetic Algorithm," Mechanism and Machine Theory, Vol. 33, pp. 163-174.
  2. Simionescu, I. and Ciupitu, L., 2000, "The Static Balancing of the Industrial Robot Arms Part I: Discrete Balancing," Mechanisms and Machine Theory, Vol. 35, pp. 1287-1298. https://doi.org/10.1016/S0094-114X(99)00067-1
  3. Simionescu, I. and Ciupitu, L., 2000, "The Static Balancing of the Industrial Robot Arms Part I: Continuous Balancing," Mechanisms and Machine Theory, Vol. 35, pp. 1299-1311. https://doi.org/10.1016/S0094-114X(99)00068-3
  4. Mancini, L. J. and Piziali, R. L., 1976, "Optimal Design of Helical Springs by Geometrical Programming," Engineering Optimization, Vol. 2, pp. 73-81. https://doi.org/10.1080/03052157608960599
  5. Yokota, T., Taguchi, T. and Gen M., 1997, "A Solution Method for Optimal Weight Design Problem of Helical Spring Using Genetic Algorithms", Computers & Industrial Engineering, Vol. 33, pp. 71-76. https://doi.org/10.1016/S0360-8352(97)00044-2
  6. Shigley J. E. and Mischke C. R., 2001, Mechanical Engineering Design, McGraw-Hill, New York, pp.629-663.
  7. Venkataraman P., 2009, Applied Optimization in MATLAB Programming, Wiley, New Jersey, pp.403-406.
  8. Ashok D. B. and Tirupathi R. C., 1999, Optimization Concepts and Applications in Engineering, Prentice Hall, New Jersey, pp.183-188.