초록
본 논문에서는 수직다관절 로봇에 걸리는 중력 토크를 보상하는데 주로 사용되는 스프링 중력보상장치의 최적설계에 대하여 기술하였다. 스트레스, 좌굴, 피로 조건과 같은 스프링 설계에 대한 다수의 비선형 제약 조건을 반영하면서, 동시에 계산 시간을 줄이기 위하여, SQP(Sequential Quadratic Programming)를 적용하였다. 또한 정수해를 가져야 하는 설계 변수를 반영하기 위하여, Continuous Relaxation 방법을 사용하였다. 시뮬레이션을 통하여 설계된 중력보상 장치가 주요 작업 영역에서 추가의 무게 증가 없이 중력 보상 성능이 효과적으로 높아짐을 입증하였다.
In this paper, the optimal design of a spring-type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer-valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.