DOI QR코드

DOI QR Code

석탄바닥재-적점토계 인공골재의 특성평가

Characterization of artificial aggregates of coal bottom ash-red clay system

  • Kim, Kangduk (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kang, Seunggu (Department of Advanced Materials Engineering, Kyonggi University)
  • 투고 : 2012.10.25
  • 심사 : 2012.11.23
  • 발행 : 2012.12.31

초록

화력발전소에서 발생되는 석탄 바닥재(이하 바닥재로 칭함)를 재활용하기 위하여 이를 적점토와 혼합, 소성하여 인공골재를 제조함에 있어, 바닥재의 입도와 배합비를 실험변수로 하여 인공골재의 특성을 제어하였다. 채취된 바닥재는 2 mm 이상의 입자들이 38 wt% 존재하는 거친 입도를 나타내었으며, 미연탄 덩어리들과 다공성 슬래그들이 혼재하였으나, 이를 체가름 및 분쇄공정을 통하여 세립(100 ${\mu}m$ 이하) 및 조립(2 mm 이하) 입도를 갖는 2가지 바닥재로 분리하였다. $1100{\sim}1200^{\circ}C$의 조건에서 직화 소성된 인공골재의 물성 측정 결과, 세립 바닥재로 제조된 인공골재는 조립 바닥재로 제조된 경우보다 높은 부피비중과 낮은 흡수율을 나타내었다. 또한 조립 바닥재로 제조된 인공 골재는 내부에 다공성 슬래그와 미연탄 덩어리로 인해 불균일하고 치밀하지 못한 구조를 나타낸 반면, 세립 바닥재로 제조된 인공골재는 상대적으로 치밀하고 균일하였다. 본 연구를 통해 바닥재의 입도 및 조성변화를 통해 인공골재의 비중 및 흡수율을 각각 1.2~1.7 및 13~21 % 범위로 제어할 수 있음을 확인하였고, 따라서 바닥재 인공골재는 향후 건축/토목 등의 재료로 폭넓게 활용될 것으로 기대된다.

In order to recycle the coal bottom ashes (denoted as BA) produced from a thermal power plant, the artificial aggregates (denoted as AAs) containing BA and red clay were manufactured, and the physical properties of AAs were studied as a function of particle size of BA and batch compositions. As-received BA had 38 wt% coarse particles of above 2 mm and many unburned carbon mass and porous slag particles were co-existed. So the two particle sizes of BA, the fine (< 100 ${\mu}m$) and coarse (< 2 mm), were prepared by milling and screening process. The AAs containing fine BA sintered at $1100{\sim}1200^{\circ}C$ had the higher bulk density and lower water absorption compared to the specimen made of coarse BA. The inside core of AAs manufactured by using coarse BA showed nonuniform and porous microstructure, while the AAs made of fine BA had a uniform and dense microstructure. In this research, the AAs containing BA and red clay with various bulk density (1.2~1.7) and water absorption (13~21 %) could be manufactured by controlling the particle size of BA and batch compositions, so the AAs of various physical properties could be applied to the wide fields such as construction/building materials in near future.

키워드

참고문헌

  1. Y.S. Lee and S.G. Kang, "An experimental study on the engineering characteristics of functional construction materials using fly ash", J. of the Korean Society of Civil Engineers 20[2-C] (2000) 147.
  2. K.K. Kuk, H.Y. Kim and B.S. Chun, "A study on the engineering characteristics of power plant coal ash", J. of the Geo-environmental Society 11[5] (2010) 25.
  3. Y.W. Yoon, K.S. Chae and K.H. Song, "Evaluation of static and dynamic characteristics of coal ashes", J. of the Geo-environmental Society 10[3] (2009) 5.
  4. Y.L. Koh and B.S. Chun, "The proper mixing ratio of fly ash to bottom ash for use of highway embankment and subgrade materials", J. of the Korean Society of Civil Engineers 12[1] (1992) 177.
  5. B.S. Chun, Y.I. Koh, M.Y. Oh and H.S. Kwon, "Studies on engineering properties of coal ash obtained as industrial wastes", J. of the Korean Society of Civil Engineers 10[1] (1990) 115.
  6. D.Y. Shin and K.N. Kim, "Photocatalytic degradation of gaseous acetaldehyde through $TiO_{2}$-coated fly ash composite", J of the Korean Ceramic Society 45[1] (2008) 43. https://doi.org/10.4191/KCERS.2008.45.1.043
  7. W.Y. Kim, H.B. Ji, T.Y. Yang, S.Y. Yoon and H.C. Park, "Preparation of porous mullite composites through recycling of coal fly ash", J of the Korean Ceramic Society 47[2] (2010) 151. https://doi.org/10.4191/KCERS.2010.47.2.151
  8. W.G. Shin, D.S. Lim and B.S. Chun, "A study on selfhardening characteristic of coal ash by mixing ratio of fly ash and bottom ash", J. of the Geo-environmental Society 11[6] (2010) 85.
  9. B.S. Chun and Y.H. Yeoh, "A study on the recycling of coal ash as structural backfill materials", J. Kor. Soc. Ocean Eng. 14[1] (2000) 74.
  10. S.J. Choi and M.H. Kim, "A study on the Durabilities of high volume coal ash concrete by the kinds of coal ash", J. Kor. Insti. Build. Const. 9[3] (2009) 73. https://doi.org/10.5345/JKIC.2009.9.3.073
  11. D.U. Lee and Y.S. Kim, "A study on the strength properties of concrete containing bottom ash as a part of fine aggregate", J. Architectural Institute of Kor. 22[6] (2006) 79.
  12. S.U. Shin, S. Kumar, T.U. Jung and B.W. Shin, "The strength and characteristic of PCC bottom ash", J. Kor. Geo-Environ. Soc. 8[2] (2007) 57.
  13. V. Adell, C.R. Cheeseman, A. Doel, A. Beattie and A.R. Boccaccini, "Comparison of rapid and slow sintered pulverised fuel ash", Fuel 87 (2008) 187. https://doi.org/10.1016/j.fuel.2007.04.009
  14. W.E. Browell "Black coring in structural clay products", J. of the American Ceramic Soc. 40[6] (1957) 179. https://doi.org/10.1111/j.1151-2916.1957.tb12600.x
  15. V. Beltran, A. Blasco, A. Escardino and F. Negre, "Formation of black core during the firing of floor and wall tiles", Interceram 37[3] (1988) 15.
  16. S.C. Huang, F.C. Chang, S.L. Lo, M.Y. Lee, C.F. Wang and J.D. Lin, "Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash", J. of Hazardous Materials 144 (2007) 52. https://doi.org/10.1016/j.jhazmat.2006.09.094
  17. S.M. Han, D.Y. Shin and S.K. Kang, "Preparation for porous ceramics using low grade clay", J. of the Korean Ceram. Soc. 35[6] (1998) 575.
  18. M.A. Kang and S.G. Kang, "Characterization of artificial aggregates fabricated from coal bottom ash containing much unburned carbon", J. of the Korean Crystal Growth and Crystal Tech. 21[1] (2011) 47. https://doi.org/10.6111/JKCGCT.2011.21.1.047

피인용 문헌

  1. Bloating mechanism for coal ash with iron oxide vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.077