DOI QR코드

DOI QR Code

골결손부 재건을 위한 금속 이온 치환 이상인산칼슘 합성 및 생체 활성 평가

Synthesis and bioactivity evaluation of metal ion-substitution biphasic calcium phosphate for bone defect reconstruction

  • 김태완 (부산대학교 재료공학부) ;
  • 김동현 (부산대학교 재료공학부) ;
  • 진형호 (부산대학교 재료공학부) ;
  • 이승호 (한국세라믹기술원 에코복합소재센터) ;
  • 박홍채 (부산대학교 재료공학부) ;
  • 윤석영 (부산대학교 재료공학부)
  • Kim, Tae-Wan (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Engineering, Pusan National University) ;
  • Jin, Hyeong-Ho (School of Materials Science Engineering, Pusan National University) ;
  • Lee, Seung Ho (Echo Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Hong-Chae (School of Materials Science Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Engineering, Pusan National University)
  • 투고 : 2012.10.08
  • 심사 : 2012.11.23
  • 발행 : 2012.12.31

초록

BCP, Mg-BCP, Si-BCP 분말을 공침법(co-precipitation process)을 이용하여 합성하였다. 제조된 분말을 X-선 회절 분석(XRD), 적외선분광분석(FTIR)을 이용하여 특성을 분석하였다. Ca/P 몰 비율이 1.602인 칼슘 결손 아파타이트 공침물을 제조하여 $1000^{\circ}C$ 열처리 과정을 통하여 HAp와 ${\beta}$-TCP 상이 혼재된 BCP, Mg-BCP, Si-BCP을 합성할 수 있었다. 제조된 분말의 생체활성 거동을 평가하기 위하여 Hanks' Balanced Salt Solution(HBSS)에 침적시켜 시간에 따라 형상의 변화 및 결정상을 분석한 결과, BCP 분말에 비하여 금속 이온이 치환된 BCP 분말에서 빠른 생체활성을 관찰할 수 있었다. MTT assay를 통한 세포 성장률 평가에서모든 분말에서 시간 경과에 따라 독성을 나타내지 않았으며, 세포의 활성이 증가하였다.

The co-precipitation technique has been applied to synthesize Biphasic Calcium Phosphate (BCP), Mg-BCP and Si-BCP. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized BCP, Mg-BCP and Si-BCP powders. The results have shown that BCP and substitution of magnesium and silicon in the calcium deficient apatites revealed the formation of biphasic mixtures of Hydroxyapatite (HAp)/${\beta}$-Tricalcium phosphate (${\beta}$-TCP) ratios after heating at $1000^{\circ}C$. Ionic substituted BCP is able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. An MTT assay indicated that BCP, Mg-BCP, and Si-BCP powders had no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

키워드

참고문헌

  1. K. de Groot, "Clinical applications of calcium phosphate biomaterials; A review", Ceram. Int. 19 (1993) 363. https://doi.org/10.1016/0272-8842(93)90050-2
  2. M. Jarcho, "Biological aspects of calcium phosphates: properties and applications", Dent. Clin. North. Am. 30 (1986) 25.
  3. R.W. Bucholz, A. Carlton and R.E. Holmes, "Hydroxyapatite and tricalcium phosphate bone graft substitutes", Orthop. Clin. North. Am. 18 (1987) 323.
  4. L.L. Hench, "Bioceramics", J. Am. Ceram. Soc. 81 (1998) 1705.
  5. C.P.A.T. Klein, A.A. Driessen, K. de Groot and A. van den Hooff, "Biodegradation behavior of various calcium phosphate materials in bone tissue", J. Biomed. Mater. Res. A 17 (1983) 769. https://doi.org/10.1002/jbm.820170505
  6. S.V. Dorozhkin and M. Epple, "Biological and medical significance of calcium phosphates", Angew. Chem. Int. Ed. 41 (2002) 3130. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
  7. S. Yamada, D. Heyman, J.K. Bouler and G. Daculsi, "Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/$\beta$-tricalcium phosphate ratios", Biomaterials 18 (1997) 1037. https://doi.org/10.1016/S0142-9612(97)00036-7
  8. J.M. Bouler, R.Z. LeGeros and G. Daculsi, "Biphasic calcium phosphates: Influence of three synthesis parameters on the HA/$\beta$-TCP ratio", J. Biomed. Mater. Res. A 51 (2000) 680. https://doi.org/10.1002/1097-4636(20000915)51:4<680::AID-JBM16>3.0.CO;2-#
  9. M. Jarcho, "Calcium phosphate ceramics as hard tissue prosthetic", Clin. Orthop. Relat. Res. 157 (1981) 259.
  10. S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas and C. Christiansen, "Incorporation and distribution of strontium in bone", Bone 28 (2001) 446. https://doi.org/10.1016/S8756-3282(01)00419-7
  11. R.S. Lee, M.V. Kayser and S.Y. Ali, "Calcium phosphate microcrystal deposition in the human intervertebral disc", J. Anat. 208 (2006) 13. https://doi.org/10.1111/j.1469-7580.2006.00504.x
  12. N.C. Blumenthal, F. Betts and A.S. Posner, "Precipitation of calcium phosphates from electrolyte solutions III. Radiometric studies of the kinetics of precipitation and aging of calcium phosphates", Calcif. Tissue. Int. 18 (1975) 81. https://doi.org/10.1007/BF02546228
  13. A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K. Noris Suarez and L. Moro, "Chemical and structural characterization of the mineral phase from cortical and trabecular bone", J. Inorg. Biochem. 68 (1997) 45. https://doi.org/10.1016/S0162-0134(97)00007-X
  14. R.Z. Le Geros, "Calcium phosphates in oral biology and medicine", Monogr. Oral. Sci. 15 (1991) 1.
  15. I.R. Gibson, S.M. Best and W. Bonfield, "Chemical characterization of silicon-substituted hydroxyapatite", J. Biomed. Mater. Res. A. 44 (1999) 422. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
  16. K.J. Lilley, U. Gbureck, J.C. Knowles, D.F. Farrar and J.E. Barralet, "Cement from magnesium substituted hydroxyapatite", J. Mater. Sci. Mater. Med. 16 (2005) 455.
  17. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas and K.S. TenHuisen, "Effect of sintered silicatesubstituted hydroxyapatite on remodelling processes at the bone-implant interface", Biomaterilas 25 (2004) 4647. https://doi.org/10.1016/j.biomaterials.2003.12.008
  18. J. Pena and M. Vallet-Regi, "Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique", J. Euro. Ceram. Soc. 23 (2003) 1687. https://doi.org/10.1016/S0955-2219(02)00369-2
  19. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C. Chung and Y.H. Kim, "Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors", Biomaterials 24 (2003) 1389. https://doi.org/10.1016/S0142-9612(02)00523-9
  20. O. Gauthier, J.M. Bouler, E. Aguado, P. Pilet and G. Daculsi, "Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth", Biomaterials 19 (1998) 133. https://doi.org/10.1016/S0142-9612(97)00180-4
  21. R.Z. Le Geros, "Calcium phosphates in oral biology and medicine, in: H.M. Myers (Ed.)", Monographs in Oral Science Karger Basel 31 (1991).
  22. M. Palard, E. Champion and S. Foucaud, "Synthesis of silicated hydroxyapatite $Ca_{10}(PO_{4})_{6-x}(SiO_{4})x(OH)_{2-x}$", J. Solid State Chem. 181 (2008) 1950. https://doi.org/10.1016/j.jssc.2008.04.027
  23. Th. Leventouri, C.E. Bunaciu and V. Perdikatsis, "Neutron powder diffraction studies of silicon-substituted hydroxyapatite", Biomaterials 24 (2003) 4205. https://doi.org/10.1016/S0142-9612(03)00333-8
  24. A. Mortier, J. Lemaitre and P.G. Rouxhet, "Temperatureprogrammed characterization of synthetic calcium-deficient phosphate apatites", Thermochimica Act 143 (1989) 265. https://doi.org/10.1016/0040-6031(89)85065-8
  25. S. Gomes, G. Renaudin, A. Mesbah, E. Jallot, C. Bonhomme, F. Babonneau and J.-M. Nedelec, "Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study", Acta Biomateralia 6 (2010) 3264. https://doi.org/10.1016/j.actbio.2010.02.034
  26. T.W. Kim, D.H. Kim, H.H. Jin, H.S Lee, H.C. Park and S.Y. Yoon, "Bioactivity behavior of Si and Mg ion-substituted biphasic calcium phosphate powders", J. Kor. Cry. Grow. Cry. Tech. 22 (2012) 92. https://doi.org/10.6111/JKCGCT.2012.22.2.092
  27. S. Kannan, I.A.F. Lemos, J.H.G. Rocha and J.M.F. Ferreira, "Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/ $\beta$-tricalcium phosphate ratios", J. Solid. State. Chem. 178 (2005) 3190. https://doi.org/10.1016/j.jssc.2005.08.003
  28. L.H. Long, L.D. Chen, S.Q. Bai, J. Chang and K.L. Lin, "Preparation of dense $\beta$-$CaSiO_{3}$ ceramic with high mechanical strength and HAp formation ability in simulated body fluid", J. Eur. Ceram. Soc. 26 (2006) 1701. https://doi.org/10.1016/j.jeurceramsoc.2005.03.247
  29. C.W. Song, T.W. Kim, D.H. Kim, H.H. Jin, K.H. Hwang, J.K. Lee, H.C. Park and S.Y. Yoon, "In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro", J. Phys. Chem. Solid. 73 (2012) 39. https://doi.org/10.1016/j.jpcs.2011.09.021
  30. K.S. TenHuisen and P.W. Brown, "Effects of magnesium on the formation of calcium-deficient hydroxyapatite from $CaHPO_{4}$ . $2H_{2}O$ and $Ca4(PO_{4})_{2}O$", J. Biomed. Mater. Res. 36 (1997) 306. https://doi.org/10.1002/(SICI)1097-4636(19970905)36:3<306::AID-JBM5>3.0.CO;2-I
  31. X. Lu and Y. Leng, "Theoretical analysis of calcium phosphate precipitation in simulated body fluid", Biomaterials 26 (2005) 1097. https://doi.org/10.1016/j.biomaterials.2004.05.034
  32. T.W. Kim, D.H. Kim, H.H. Jin, H.S Lee, H.C. Park and S.Y. Yoon, "Bioactivity behavior of biphasic calcium phosphate powders prepared by co-precipitation method", J. Kor. Cry. Grow. Cry. Tech. 22 (2012) 99. https://doi.org/10.6111/JKCGCT.2012.22.2.099