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Is it Possible to Predict the ADI of Pesticides using the QSAR Approach?
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ABSTRACTS

Objectives: QSAR methodology was applied to explain two different sets of acceptable daily intake (ADI) data

of 74 pesticides proposed by both the USEPA and WHO in terms of setting guidelines for food and drinking

water. 

Methods: A subset of calculated descriptors was selected from Dragon® software. QSARs were then developed

utilizing a statistical technique, genetic algorithm-multiple linear regression (GA-MLR). The differences in each

specific model in the prediction of the ADI of the pesticides were discussed. 

Results: The stepwise multiple linear regression analysis resulted in a statistically significant QSAR model with

five descriptors. Resultant QSAR models were robust, showing good utility across multiple classes of pesticide

compounds. The applicability domain was also defined. The proposed models were robust and satisfactory. 

Conclusions: The QSAR model could be a feasible and effective tool for predicting ADI and for the comparison

of logADIEPA to logADIWHO. The statistical results agree with the fact that USEPA focuses on more subtle

endpoints than does WHO.
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I. Introduction

An increasing number of environmental effects of

pesticide applications are now being taken into

account by regulatory bodies, leading to increased

restrictions on their use or even bans. The World

Health Organization (WHO) and United States

Environmental Protection Agency (U.S. EPA) have

established an ADI for an actual risk management

decision in the regulatory process of pesticides for

setting safety standards. Therefore, EPA gave highest

priority to pesticides in food and drinking water and

all other non-occupational sources. The U.S.

Department of Agriculture (USDA) and The Food

and Drug Administration (FDA) have also develop

statistically valid information on pesticide residues in

foods for compliance with these residue limits.1,2) 

Two safety standards, ADI (mg/kg/day) or tolerable

intakes, referred as reference doses for noncarcinogens,

are used to establish a level of pesticide residues on

food products that will pose a negligible risk to

human health. The ADI takes into account daily

exposure of a substance over a lifetime. The ADI

concept has often been used as a tool in reaching

risk management decisions with an equation as

follows:

Acceptable Daily Intake (ADI) = NOAEL 

(or LOAEL)/(UF*MF) (Eq. 1)

NOAEL = No observed adverse effect level

LOAEL = Lowest observed adverse effect level

UF = uncertainty factor

MF = modifying factor

In this equation the NOAELs (or LOAELs) that

are derived directly from toxicological studies, may

be modified by both an UF and MF. The NOAEL

is scaled by a safety factor, conventionally of 100,

to account for the differences between test animals

and humans (factor of 10) and possible differences

in sensitivity between humans (another factor of 10).
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The feature of the formula is that it provides a

mechanism for viewing all the data simultaneously,

resulting in an integrated profile of a compound's

toxicity. In addition, exposure duration-responset

rends, providing a possible strategy for estimating

acceptable intakes for partial lifetime exposures. The

formula using graphic method relies on a simple

severity ranking system for data presentation (i.e.,

NOEL, NOAEL, etc).31)

However, the formula has potential methodological

limitations. The main ones are that the value is

dependent on the dose levels selected in the study,

that the value will be higher for studies of low

sensitivity, and that data from doses above the

NOAEL are used only to define the nature of the

hazard. The NOAEL approach is used to establish

an intake with negligible risk such as an ADI but

cannot be used to estimate the risk associated with

intake levels above the ADI.32)

False or misleading ADI for scientific and policy

guidelines adopted to guide risk assessments will

affect the likelihood of under- or overestimation of

the health risk.3) For example, typical human exposure

at 1% of the ADI represents an exposure 10,000 times

lower than levels that do not cause toxicity in animals.

For most pesticide residues in food consignments, the

measurement uncertainty is 50% of the maximum

residue limit (MRL), which is fundamentally critical

for comparing ADI guidelines.

The presence of statistical errors can lead to

inflated error rates and substantial distortions of

parameter and statistic estimates.12) The impact of

exposure misclassification on relative risks using the

range of correlation coefficients as the ratio of the

between-subjects exposure variance to total variance

is assessed in the risk management.13,30) 

Because of the increasing need to alternative

methods for toxicity testing, a variety of computational

methods are being proposed for the assessment of

toxicology of the pesticides.5) Among these methods,

the quantitative structure-activity relationship (QSAR)

modeling has attracted an increasing attention because

of its high predictabilities to approximate ranking of

chemical hazards.6,7) QSAR method is particularly

useful for new substances where data from human or

animal substances is limited and which are structurally

related to other substances of known toxicological

properties.

Linear and non-linear QSAR models are developed

and validated with multiple linear regression (MLR),

and nonlinear methods namely partial least square

(PLS) or artificial neural network (ANN). The

genetic algorithm-multiple llinear regression (GA-

MLR) method was shown to be more powerful tool

than other linear- or nonlinear methods.23-25)

QSAR is a widely used method to relate chemical

structures to biological responses or properties.

Traditional QSAR models on pesticides are built

mainly based on lethal concentration 50% (LC50)8)

or physico-chemical data9-11), which are then used to

construct a regression model. However, no attempt

has yet been made to predict QSAR models utilizing

health-based guidance such as ADI due to

uncertainty factors. Therefore, a full weight of the

evidence including characterization of uncertainty

has not yet been finalized in a preliminary human

health risk assessment for certain pesticides.3,4) An

approach using a robust QSAR technique to detect

potential sources may provide critical information

about uncertainty of ADI values in addition to the

model development.

In these respects, the aims of this study were: (1)

to validate and predict MLR models based on two

sets of ADI values, and (2) to determine whether or

not the robust QSAR models can be used in

qualitative and quantitative risk assessments.

II. Materials and Methods

1. Data sets 

Table 1 shows a data set including names, CASRN

(CAS Registry Number), ADIEPA, ADIWHO and

ADIWHO/ADIEPA of 74 pesticides which were selected

from the literature.14) 

Seven compounds with the highest ADIWHO/ADIEPA
ratio (greater than 10) were selected to compare if the

compounds would include the group of outliers

obtained from QSAR models or vice versa (Table 2). 

2. Optimization and descriptor calculation

By using Hyperchem software 7.0 (Hypercube,

Inc., Gainesville, FL, USA), chemical structures

were drawn and named by CAS-number. Molecular

mechanic force field (MM+) was selected for the

geometry optimization using Polak-Ribiere algorithm

with a maximum cycle (10000) and a convergence

limit of the 0.005 kcal/mol. After optimizing chemical

structures from Hyperchem 7 software, Dragon 5.0
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Table 1. Names, CASRN, ADIEPA, ADIWHO values and ADIWHO/ADIEPA of 74 pesticides (mg/kg/day)

Compound CASRN ADIEPA ADIWHO ADIWHO/ADIEPA

1 Anilazine (Dyrene) 101-05-3 0.0004 0.1 7.5

2 Triforine(Funginex) 26644-46-2 0.025 0.02 3

3 Triadimenfon (Bayleton) 43121-43-3 0.04 0.03 0.25

4 Thiram 137-26-8 0.008 0.01 3.333

5 Thiophanate-methyl 23564-05-8 0.08 0.08 1.587

6 Thiodicarb (Larvin) 59669-26-0 0.03 0.03 4

7 Thiabendazole (+salt) 148-79-8 0.1 0.1 0.8

8 Terbufos 13071-79-9 0.0001 0.0002 1.333

9 Propiconazole (Banner/Tilt) 60207-90-1 0.013 0.04 714.286

10 Propargite (Omite) 2312-35-8 0.04 0.15 0.769

11 Profenofos (Curacron) 41198-08-7 0.0001 0.01 0.714

12 Prochloraz 67747-09-5 0.0075 0.01 5

13 Pirimiphos-methyl 29232-93-7 0.01 0.03 2

14 Phosphamidon 13171-21-6 0.0002 0.0005 1.5

15 Phosmet (Imidan) 732-11-6 0.01 0.02 3.333

16 Phosalone 2310-17-0 0.0025 0.001 1

17 Phorate (Thimet) 298-02-2 0.0005 0.0002 0.8

18 Permethrin 52645-53-1 0.05 0.05 20

19 Pentachloronitrobezene 82-68-8 0.003 0.007 1.25

20 Parathion (Ethyl pararthion) 56-38-2 0.0003 0.005 2.667

21 Oxydemeton-methyl 301-12-2 0.0005 0.0003 1

22 Oxamyl (Vydate) 23135-22-0 0.0002 0.03 0.8

23 Monocrotophos (Azodrin) 6923-22-4 0.0001 0.0006 1.2

24 Mevinphos (Phosdrin) 7786-34-7 0.0003 0.0015 1.667

25 Methyl parathion 298-00-0 0.0003 0.02 1

26 Methoxychlor 72-43-5 0.005 0.1 1

27 Methomyl 16752-77-5 0.008 0.03 20

28 Methiocarb (Mesurol) 2032-65-7 0.005 0.001 0.25

29 Methidathion 950-37-8 0.0015 0.001 0.667

30 Mthamidophos (Monitor) 10265-92-6 0.001 0.004 0.4

31 Metalazyl 57837-19-1 0.074 0.03 0.41

32 Maleic hydrazide 123-33-1 0.25 0.5 2

33 Malathion 121-75-5 0.02 0.02 1

34 Lindane (gamma BHC) 58-89-9 0.0047 0.008 1.786

35 Isofenphos (Amaze) 25311-71-1 0.0005 0.001 4

36 Iprodione (Glycophene) 36734-19-7 0.06 0.2 0.6

37 Imazalil 35554-44-0 0.025 0.03 3

38 Hexythiazox (Savey) 78587-05-0 0.025 0.03 2

39 Folpet 133-07-3 0.009 0.01 5

40 Fenvalerate (Pydrin) 51630-58-1 0.025 0.02 0.6

41 Fenthion 55-38-9 0.0007 0.001 3.846

42 Fensulfothion 115-90-2 0.003 0.003 1.2
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package (Milano Chemometrics and QSAR

Research Group, University of Milano-Bicocca,

Milan, Italy) was employed for the calculation of

the Dragon molecular descriptors.15,16) 

 

3. Statistical methods using GA-MLR

The MLR models by using genetic algorithms

(GA) for variable selection, in comparison with the

result obtained by using calculated descriptors and

R package, were developed with a training set of 29

compounds using the MobyDigs software (TALETE

srl–Milano, Italy). To perform multilinear regression,

GA was used to select, from among all the

calculated Dragon descriptors, the most relevant in

obtaining models that yielded the highest predictive

power for the response. Reliability of a QSAR was

Table 1. Names, CASRN, ADIEPA, ADIWHO values and ADIWHO/ADIEPA of 74 pesticides (mg/kg/day)

Compound CASRN ADIEPA ADIWHO ADIWHO/ADIEPA

43 Fenitrothion (Sumithion) 122-14-5 0.0013 0.005 0.8

44 Fenamiphos (Nemacur)* 22224-92-6 0.0001 0.0005 1.429

45 Ethoprop (Ethoprophos) 13194-48-4 0.0001 0.0003 1

46 Ethion 563-12-2 0.0005 0.002 0.875

47 Endosulfan 115-29-7 0.006 0.006 0.25

48 Disulfoton 298-04-4 0.0003 0.0003 1.2

49 Diphenylamine 122-39-4 0.03 0.02 1

50 Dimethoate 60-51-5 0.0005 0.01 2

51 Dimethipin (Harvade) 55290-64-7 0.02 0.02 1

52 Difubenzuron (Dimilin) 35367-38-5 0.02 0.02 10

53 Dicofol (Kelthane) 115-32-2 0.0012 0.002 0.405

54 Dicloran (DCNA/Botran) 99-30-9 0.025 0.03 4

55 Dichlorvos (DDVP) 62-73-7 0.005 0.004 0.667

56 Diazinon 333-41-5 0.0001 0.002 0.2

57 Cyromazine (Larvadex) 66215-27-8 0.0075 0.02 3.75

58 Cypermethrin (Ammo) 52315-07-8 0.01 0.05 20

59 Cyfluthrin (Baythroid) 68359-37-5 0.025 0.02 66.667

60 Chlorpyrifos-methyl 5598-13-0 0.01 0.01 100

61 Chlorpyrifos 2921-88-2 0.003 0.01 6

62 Chlorothalonil 1897-45-6 0.02 0.03 1.2

63 Chlorobenzilate 510-15-6 0.01 0.02 0.6

64 Carbophenothion 786-19-6 0.0001 0.0005 1

65 Carbofuran 1563-66-2 0.005 0.01 0.4

66 Carbaryl 63-25-2 0.014 0.01 0.889

67 Captan 133-06-2 0.13 0.1 2

68 Bifenthrin (Talstar) 82657-04-3 0.015 0.02 2.5

69 Bentazon (Basagran) 25057-89-0 0.03 0.1 1.714

70 Bendiocarb 22781-23-3 0.005 0.004 2.857

71 Baygon (Propoxur) 114-26-1 0.005 0.02 100

72 Azinphos-methyl (Guthion) 86-50-0 0.0015 0.005 0.625

73 Aldicarb (Tern ik) 116-06-3 0.001 0.003 1

74 Acephate 30560-19-1 0.004 0.03 1.316

CASRN, 
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estimated using the leave-one-out cross-validation

(LOOcv) method.

Model performance was described by means of

parameters related to model predictive capability (Q2
cv

and Q2
boot) and fitting power (R

2 and R2
adj). Standard

deviation error in prediction (SDEP), prediction

sum of squares (PRESS), standardized regression

coefficient (SRC), standard error of estimate (s), the

F value of the Fisher’s exact test, the inter-correlation

of the selected descriptors (KXX) and the correlation

of the X block with response (KXY) were also

calculated. The Hat value was the measure of

leverage, to verify the structural applicability domain.

Influential compounds (influential points) were those

with a leverage greater than the critical value

(warning leverage) h*=3p’/n, where p’ is the number

of model variables plus one, and n the number of

objects used to calculate the model. If a chemical

has a hat value greater than the warning leverage

(h*), it means that the chemical greatly influences

the regression line, and therefore may be unreliable.

The QUIK (Q under influence of K) rule was used

to discard models with high predictor collinearity

which might lead to chance correlation.17) 

4. External validation

For relatively small data sets, internal validation

of prediction models by bootstrap techniques may

not be sufficient and indicative for the model's

performance in future patients. External validation

is then essential before implementing prediction

models.. We randomly split into a training (70%)

and a test (30%) set out of 74 pesticides, respectively.

QSAR models were developed using only chemicals

in the training set. Results were then validated using

the test set. 

III. Results

1. QSAR model using GA-MLR

MobyDigs software was used to select descriptors

and build QSAR models, as described in the Method

section. Table 3 contains the list of descriptors used

and outliers removed. Descriptors and outliers of a

5-descriptor MLR model. As was presented in Table

3, logADIWHO model had MATS2e and GATS2e as

2D orbital energy descriptors, JGI6 to evaluate the

charge transfer between a pair of atoms, HATS6u

and H051 while logADIEPA contains np, X5,

MATS8m, JGI6 and MLOGP2 as a descriptor of

hydrophobicity. The MATS2e and GATS2e are related

to the atomic electronegativities of a molecule.18)

MATS8m belongs to 2D Moran autocorrelations of lag

8 / weighted by atomic masses.

2. Statistics on GA-MLR model

The real usefulness of QSAR models is not just

their ability to reproduce known data, verified by

their fitting power (R2). For leave one out (LOO)

cross-validation, a data point is removed from the

set and the model is recalculated. The predicted

activity for that point is then compared to its actual

value to get Q2
LOO. This is repeated until each data

Table 2. Seven compounds with the highest ADIWHO/

ADIEPA ratio

Compounds ADIEPA/ADIWHO ratio

1. Propiconazole 714

2. Permethrin 20

3. Methomyl 20

4. Difubenzuron 10

5. Cypermethrin 20

6. Cyfluthrin (Baythroid) 67

7. Baygon (Propoxur) 100

Table 3. Selectided molecular descriptors and outliers of a 5-descriptor MLR model

Dependent variable LogADIEPA LogADIWHO

5 Descriptors selected np, X5, MATS8m, JGI6, MLOGP2 MATS2e, GATS2e, JGI2. HATS6u, H051

Influential point or Outliers Dicofol (No 14)  

nP, number of phosphorous atoms (Constitutional indices); X5, connectivity index of order 5 (Connectivity indices); MATS8m,

Moran autocorrelation - lag 8 / weighted by atomic masses; JGI6- mean topological charge index of order6; MLOGP2, squared

Moriguchi octanol-water partition coeff; MATS2e: Moran autocorrelation – lag 2 / weighted by atomic Sanderson

electronegativities; GATS2e : Geary autocorrelation - lag 2 / weighted by atomic Sanderson electronegativities; JGI2, mean

topological charge index of order 2; HATS6u. leverage-weighted autocorrelation of lag 6 / unweighted (Getaway descriptor); H-

051: number of H attached to α-C 
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point has been omitted once. The internal predictive

ability of the model was also verified using the

bootstrap Q2
BOOT procedure, as is strongly recommended

for QSAR modeling. The robustness of the proposed

model and its predictive ability was guaranteed by

the high value of Q2
BOOT based on the bootstrapping

being repeated 5000 times. Q2
BOOT values in the

models were seen to have similar vales to Q2
LOO.

The cross-validation parameters are shown in Table

4. The cross-validation results confirmed that the

obtained regression model has a good internal and

external predictive power.

According to the QUIK rule, global correlations

of the [X + y] block (KXY) of the constructed QSAR

models were greater than those of the global

correlation of the X block (KXX) variables (X being

the molecular descriptors and y the response

variable) and were considered acceptable. The

predictive model with three- to five descriptors for

internal and external validation distinctively had KXY

greater than multivariate correlation KXX to fulfill the

QUIK rule (KXX=32.78, KXY=38.38 for logADIEPA;

KXX=26.71, KXY=27.38 for logADIEPA).

Also, The 5-descriptor QSAR of logADIWHO

obtained by external validation also showed a far

greater difference (∆K) than logADIWHO model

[(KXX=32.78, KXY=38.38 for logADIEPA; KXX=26.71,

KXY=27.38 for logADIEPA)] for internal, and (KXX=

22.44, KXY=34.63, ∆K=12.19 for logADIWHO; KXX=

30.02, KXY=31.62, ∆K=1.60 for logADIEPA) for

external]. 

 

3. Domain of applicability

The domain of applicability was verified by the

Table 4. Statistical results of internal and external validation. 

No of descriptor Descriptors n R2 Q2
LOO Q2

boot R2
adj SDEP Kxx Kxy F SE PRESS

LogADIEPA

3 
nP MATS7m 

MATS7v 
74 62.40 57.74 57.29 60.74 0.579 14.28 35.14 37.62 0.56 24.11

4
nP X5 JGI6 

MLOGP2
74 70.19 65.93 64.9 68.41 0.52 36.59 42.36 39.44 0.5 19.44

5
nP X5 MATS8m 

JGI6 MLOGP2
74 76.96 72.50 71.49 75.22 0.467 32.78 38.38 44.1 0.45 15.69

External*  Five descriptors  70.22 63.48 64.2 69.41 0.484 30.02 31.62 26.72 0.46 11.69

LogADIWHO

3
X0Av nArOCON 

nPO4
74 57.49 52.16 51.74 55.59 0.53 32.04 42.97 30.21 0.51 19.92

4
MATS2e GATS2e 

JGI2 H-051
74 61.86 56.94 56.15 59.55 0.50 27.1 27.27 26.77 0.49 17.93

5
MATS2e GATS2e 

JGI2 HATS6u H-051
74 66.43 60.67 58.86 63.85 0.50 26.71 27.38 25.73 0.46 16.38

External*  Five descriptors  70.87 65.28 66.24 69.06 0.42 22.44 34.63 27.03 0.41 8.6

*External validation with five descriptors for training set (70% training set; 30% external set)

Fig. 1.Williams plot of standardized residuals (y-axis)

versus leverages (hat values; x axis) for logADIWHO. 
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leverage approach [a, b] and both the influential and

the outlier chemicals were identified by the Williams

plot (Figs.1 and 2).

The applicability domain was established for

Model 2, determining the leverage values for each

compound. Figs. 1 and 2 show the Williams plot;

i.e. plot of standardized residuals (y-axis) versus

leverages (x-axis) for each compound of the training

set. From this plot, the applicability domain is

established inside a squared area within ±2 standard

deviations and a leverage threshold h* (h*=3p´/n,

being p´ the number of model parameters and n the

number of compounds). As seen in Fig. 1 for

logADIWHO model, all the 74 compounds except no.

61 (weak outlier) are inside of this area (h*=0.243).

Whereas, an influential chemical with leverage

values greater than 3p/n (h*=0.202) within ±2 was

identified in the logADIEPA model (Fig. 2) while four

weak outliers (compound 17, 41, 51 and 56) were

isolated between ±2 and ±3. We did not attempt

further to delete weak outliers or influential data

points to compare. 

4. External validation 

We performed an external validation of the

proposed model to verify its performances on an

independent population and obtained interesting

results. Models 6 and 7 were considered for external

validation. For this purpose, the whole set of 74

compounds was randomly splitted into a test set

(30%) and a training set (70%). A training set

composed of 52 compounds and test set comprised

of 22 compounds for the logADIEPA and logADIWHO,

respectively. The same set of descriptors as used for

external validation were used to frame a new

Fig. 2.Williams plot of standardized residuals (y-axis)

versus leverages (hat values; x axis) for logADIEPA.

Table 5. Regression coefficients of final 5-descriptor QSAR models for logADIEPA and logADIWHO

LogADIEPA

Regression Coeff. Errors Reg.Coeff. Conf.Intervalsa (.95) Std. Reg.Coeff.

Variable Intercept 1.985 0.193 0.386 -

X5 -0.302 0.079 0.157 -0.343

nP 0.720 0.144 0.288 0.433

JGI6 34.383 7.359 14.719 0.375

MATS8m 0.234 0.047 0.094 0.886

MLOGP2 -2.010 0.390 0.780 -0.939

LogADIWHO

Variable Intercept 0.336 0.507 1.015 -

MATS2e 2.794 0.777 1.554 0.345

GATS2e 0.739 0.207 0.414 0.269

JGI2 0.59 0.184 0.367 0.259

HATS6u 0.633 0.132 0.264 0.424

H-051 0.341 0.128 0.256 0.197

a: minimum (low) value
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equation for the test set (70% training set) to

conclude if it still gives significant statisticals

results. The statistical parameters obtained were

R2
EXT=70.2; Q

2
EXT=63.5; and FEXT=26.72 for the

logADIEPA test set, while R
2
EXT=70.8; Q

2
EXT=65.3;

and FEXT=27.23 for the logADIEPA test set (Table 4). 

5. The final predictive QSAR model 

Acceptability of the regression model was judged

by examining cross-validated squared correlation

coefficient (Q2
LOO), squared correlation coefficient

(R2), fisher’s value (F) and standard error. Performing

multiple linear regression analysis results They are

presented in Table 5. Best correlations with logADI

and statistical results were noticed in 5-descriptor

models. The predictive power of the best MLR

model was then checked by the criteria. All these

calculated criteria indicated a model with predictive

power, respectively: Q2
EXT > 0.5, R2 > 0.6. The ∆k

(KXY-KXX) was greater than 5 in all models.

According to the stdardized regression coefficient,

MATS8m and HATS6u were most positively

affecting variables in logADIEPA and logADIWHO,

respectively.

Scatter plots between experimental versus

predicted logADIEPA and logADIWHO were presented

in Figs. 1 and 2.

IV. Discussion

The GA-MLR for descriptor selection proved to

be very efficient in generating QSAR models with

a good predictive power, as indicated by the LOO

cross-validation and external-validation statistics.

The best set of the calculated descriptors was

selected with the genetic algorithm. The statistical

parameters of the built QSAR models were

satisfactory, illustrating the high quality of the

chosen descriptors. 

In this work, five descriptors were selected including

nP, X5, MATS8m, JGI6 and MLOGP2 (which have

been presented for the logADIEPA values prediction,

and including MATS2e, GATS2e, JGI2, HATS6u

and H-051 for the logADIWHO (Table 3). No

matching of selected molecular descriptors was

found between logADIEPA and logADIWHO models.

The finding seemed to imply that the QSAR models

were built with a combination of specific molecular

descriptors and UF and MF factors. Scientific

judgment is required to determine the appropriate

value to use for any given UF, MF and sources of

error inherent in quantitative risk assessment for

validation of QSAR models in the context of

chemical regulation.29)

Table 4 shows the necessary statistics, including

F-ratio, R2, Q2
LOO, and PRESS for LogADIEPA and

LogADIWHO. In general, a QSAR model is

acceptable when it has an R2 value greater than 0.6

(60%) and R2
LOO greater than 0.5. High correlation

coefficients (R2=76.96 for LogADIEPA and R
2=66.43

for LogADIWHO, respectively). Q
2
LOO value of 72.50

and 60.67 exhibited a good internal predictive power

of two developed models, indicating that the model

had high precision. The values of Q2
boot for

logADIWHO and logADIWHO were fairly close to

Q2
LOO confirming the internal predictability and

stability of the model. The difference between R2

and Q2
LOO is not large (Table 4). In view of these

observations, we conclude that the final QSAR

model of equation is fairly robust.

As a general trend, both F and R2
LOO increase with

the number of descriptors indicating a significant

increase in the predictive power of the QSAR

models. Smaller the value of PRESS statistics

indicates better prediction. High F values indicate

that the model is statistically significant. It was also

found that the R2 and Q2
LOO obviously increased

when the model size increased from 3 descriptor

term to 5 descriptor terms while the PRESS values

decreased with increased R2. The fact indicated that

these QSAR models are of high stability and

significance, namely higher predictability and

correlation. The regression analysis of 5-descriptor

regression model was clearly evidenced by the high

correlation coefficients were obtained as 76.96 (R2)

and 72.50 (Q2
LOO), and 66.43 (R

2) and 60.67 (Q2
LOO),

respectively, indicating that the QSAR models

possess good internal consistency. The result by the

QUIK rule indicated that logADIEPA model is a

better robust model. 

The negative sign of the corresponding regression

coefficient between logADIEPA and X5 and MLOGP2

indicates the logADIEPA increases with the increase of

five descriptors values (Table 5). The positive sign of

the corresponding regression coefficient indicates the

logADIEPA value increased with the value increase of

the three remaining descriptors (nP, X5, JGI6), while

logADIWHO was proportional to MATS2e, GATS2e,
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JGI2, HATS6u and H-051. The contributions of each

descriptor by standardized regression coefficients in

the MLR models were determined, and are provided

in Table 5. The standardized regression coefficients

indicated that MLOGP2 (=-0.939) and MATS8m

(=0.886) affected significantly higher than other

descriptors for logADIEPA, while HATS6u and

MATS2e were significant descriptors that affected

logADIWHO model.

Additionally, a penta-parametric linear model of

logADI has much better statistics than tri-and tetra-

parametric models for external validation. For the

majority of compounds, the residuals are small,

showing that the penta-parametric model has a fairly

good statistical quality. External validation for the

set (70 training, 30% test ) was accessed by Q2
EXT

(Table 4). The value of Q2
EXT is 63.48, which is

smaller than Q2
LOO (=72.50%). The Q2

EXT is

acceptable because the difference is small. In the

same manner, a penta-parametric model was shown

to be superior to tri- and tetra-parametric models. 

Moreover, the applicability domain of the

developed model was assessed and visualized by the

Williams plot (Figs. 1 and 2). All 74 compounds

included test sets in the applicable domain. A number

of statistical approaches to account for the

applicability domain have been described.19,20) For

both the training set and test set, the suggested model

matches the high quality parameters with good fitting

power and the capability of assessing external data.

Furthermore, almost all of the compounds was within

the applicability domain of the proposed model and

were evaluated correctly. The no 14 chemical

(Phosphamidon) was seen as a weak outlier outside

leverage (Fig. 2), but decided not to exclude it.

The highest ratio was calculated using a 10-fold

uncertainty factor which accounts for the uncertainty

in extrapolating from a lowest-observed-adverse-

effect levels (LOAELs), and chose the chemicals as

a group with highest variability in endpoints. The

selected seven chemicals with highest ratio,

however, did not coincide with those observed in a

outlier list. (Tables 2 and 3). It suggests that each

data set should be used or separately for comparative

study. The ratio, ADIWHO/ADIEPA, alone does not

seem to explain the differences among 74

compounds, possibly leading to false or misleading

interpretation, Identification of influential outliers

derived from the QSAR model. Furthermore, the

transformation of ADIWHO/ADIEPA as logRatio may

be useful to derive a logarithmic regression model

equation to represent the data In future study.

Figs. 3 and 4 show the plots of linear regression

predicted versus experimental values of the

logADIEPA and logADIWHO of 74 compounds. The

closer the regression line comes to all the points on

the scatter plot the better it is. Comparing two plots,

logADIEPA showed smaller residual variations

among data points than logADIWHO. The dindings

seem to support that USEPA focuses on more subtle

endpoints than WHO even though there are many

other factors in scientific judgement.14) Clear

differences are apparent in risk values set for the

Fig. 3.A scatter plot between experimental and predicted

logADIEPA.

Fig. 4.A scatter plot between experimental and predicted

logADIWHO.
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same chemicals by the two organizations. Only 6

out of 38 (16%) of WHO values are lower than the

EPA values. For noncarcinogens only 20 out of 74

(27%) WHO values are lower – more stringent –

than those of EPA.14)

The results obtained in this study demonstrated

that the simple linear quantitative structure-

wavelength relationship model was robust and

satisfactory. Additionally, higher levels of exposure

or exposures to multiple pesticides may result in

additional health effects. 

V. Conclusions

From the results, it is concluded that: (1) Robust

5-descriptor QSAR prediction models for the ADIs

of pesticides were constructed by using the MLR,

(2) The predictive QSAR models provided useful

information about molecular characteristics of 74

pesticides on the ADIs, and (3) EPA data gave more

accurate and reliable QSAR models, with higher

predictive ability, than WHO models, by the

statistical validation. Seven compounds with the

highest ADIWHO/ADIEPA ratio did not consistent with

outliers or influential points isolated from the

training set. The QSAR method provided an

applicability of QSAR analysis to the evaluation of

the ADIs of pesticides for a health risk assessment. 

Regulatory decisions can leads to under- or

overestimation of the actual risks for the least toxic

pesticides for a specific subpopulation group. The

collection of additional information of pesticides for

scientific judgement is required to be updated or

reassessed to meet the current scientific and

regulatory standards and guidelines. The following

specific issues need to be addressed for better

assessment of ADI: (1) construction of requisite

database, (2) establishment of assessment methodology

based on existing data and the best available

scientific knowledge, and (3) conducting basic

research to reduce scientific uncertainties including

gaps in the data and evidence base.26,27)

This QSAR approach was proven to useful to

estimate endpoints or reference values in the risk

evaluation process, given the high expense of

monitoring pesticides.21,22,28) Very careful attention

should also be paid to assessments of the

toxicological, physiological and pathological parameters

before rules are issued. 
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