DOI QR코드

DOI QR Code

Distribution of heavy metals and mercury in sediment from the lake An-dong

안동호 퇴적물 중 수은 및 중금속의 분포특성 연구

  • Park, Jin-Ju (Chemical Research Division, National Institute of Environmental Research of Environmental Research) ;
  • Kim, Ki-Joon (Chemical Research Division, National Institute of Environmental Research of Environmental Research) ;
  • Yoo, Suk-Min (Chemical Research Division, National Institute of Environmental Research of Environmental Research) ;
  • Kim, Eun-Hee (Chemical Research Division, National Institute of Environmental Research of Environmental Research) ;
  • Seok, Kwang-Seol (Chemical Research Division, National Institute of Environmental Research of Environmental Research) ;
  • Huh, In-Ah (Water Environment & Engineering Research Division, National Institute of Environmental Research of Environmental Research) ;
  • Kim, Young-Hee (Chemical Research Division, National Institute of Environmental Research of Environmental Research)
  • 박진주 (국립환경과학원 화학물질연구과) ;
  • 김기준 (국립환경과학원 화학물질연구과) ;
  • 유석민 (국립환경과학원 화학물질연구과) ;
  • 김은희 (국립환경과학원 화학물질연구과) ;
  • 석광설 (국립환경과학원 화학물질연구과) ;
  • 허인애 (국립환경과학원 물환경공학연구과) ;
  • 김영희 (국립환경과학원 화학물질연구과)
  • Received : 2012.09.26
  • Accepted : 2012.11.22
  • Published : 2012.12.25

Abstract

In this study, mercury, methylmercury and heavy metals in sediment from the lake Andong were analyzed, along with the estimation of mercury flux between sediments and water in the lake Andong. Average mercury concentrations in sediments sampled in 2009~2011 were $155.0{\pm}71.9$ ng/g, $211{\pm}62$ ng/g and $198{\pm}6.88$ ng/g, respectively. The average methylmercury concentration were $1.85{\pm}1.09$ ng/g (2009) and $3.49{\pm}1.79$ ng/g (2011), and %methylmercury, the fraction of methylmercury in total mercury were $1.17{\pm}0.39%$ and $1.77{\pm}0.94%$, respectively. Heavy metal (Zn, Cd, Pb, Cu) concentrations of the sediments exceeded ERL (Effect Range Low) level of US NOAA (National Oceanic and Atmospheric Administration)'s sediment quality criteria. Estimated mercury sedimentation flux was found to be 83.7 $ng/cm^2{\cdot}yr$ and mercury diffusion flux was estimated as 1.24 $ng/cm^2{\cdot}yr$.

본 연구에서는 안동호 퇴적물 중의 총 수은, 메틸수은, 중금속 농도를 조사하고 퇴적물과 수체간의 수은 이동량을 산정하였다. 안동호 퇴적물 중 수은 농도는 2009~2011 년에 각각 $155.0{\pm}71.9$ ng/g, $211{\pm}62$ ng/g 및 $198{\pm}6.88$ ng/g이었으며, 메틸수은은 2009 년 및 2011 년에 각각 $1.85{\pm}1.09$ ng/g, $3.49{\pm}1.79$ ng/g이었고, 총수은에 대한 메틸수은의 분율인 %메틸수은은 $1.17{\pm}0.39%$$1.77{\pm}0.94%$로 나타났다. 퇴적물 중 아연, 카드뮴, 납, 구리의 농도는 644 mg/kg, 7.3 mg/kg, 67 mg/kg, 42 mg/kg 으로 모두 미국 국립해양대기청(NOAA, National Oceanic and Atmospheric Administration)에서 제시한 퇴적물 기준(SQGs, Sediment Quality Guidelines)중의 최소 무영향 농도(ERL, Effect Range Low) 수준을 초과하는 수준이었다. 안동호에서 퇴적물로의 수은 이동량은 83.7 $ng/cm^2{\cdot}$년, 퇴적물에서부터 수체로의 수은 확산속도는 1.24 $ng/cm^2{\cdot}$년으로 추정되었다.

Keywords

References

  1. N. Pirrone, S. Cinnirella, X. Feng, R. B. Finklman, H. R. Friedli, J. Leaner, R. Mason, A. B. Mukherjee, G. B. Stracher, D. G. Streets and K. Telmer, Atmos. Chem. Phys., 10, 5951-5964 (2010). https://doi.org/10.5194/acp-10-5951-2010
  2. UNEP. Global Mercury Assessment. UNEP-Chemicals, Geneva, 2002.
  3. F. Sprovieri, N. Pirrone, M. S. Landis and R. K. Stevens, Atmos. Environ., 39, 7646-7656 (2005). https://doi.org/10.1016/j.atmosenv.2005.08.001
  4. M. Horvat, L. Liang and N. S. Bloom, Anal. Chim. Acta, 282, 153-168 (1993). https://doi.org/10.1016/0003-2670(93)80364-Q
  5. US EPA method 1630, 'Methylmercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS', 2001.
  6. Kyungpook Regional Environmental Technology Center, "The environmental assessment and proper management of downriver district caused by closed and temporarily-closed mines in upriver district of Nakdong River-The research of environmental assessment of mineral-mixed deposits in the riverbed of upriver district", 2005.
  7. M. Byeon, J. Lee, J. Park, S. Shin, J. Han and Y. Kim. Anal. Sci. Technol., 23(5), 492-497 (2010). https://doi.org/10.5806/AST.2010.23.5.492
  8. USEPA, SW-846 Method 7473: "Mercury in Solids and Solutions by Thermal Decomposition Amalgamation and Atomic Absorption Spectrophotometry", 2005.
  9. D. N. Edington, J. A. Robbines, "Determination of the activity of lead-210 in sediments and soils". In : Lake Michigan Mass Balance Study, Vol 3, 1975. Available online at www.gov/greatlakes/lmmb/methods
  10. Ministry of Environment, "National Survey on mercury bioaccumulation in freshwater fish", Ministry of Environment, Republic of Korea, 2009.
  11. US NOAA, Sediment Quality Guidelines developed for the National Status and Trends Program, 1999.
  12. P. R. Mason and A. L. Lawrence, Environ. Toxicol. Chem., 18(11), 2438-2447 (1999).
  13. P. K. Lee, S. J. Youm, Y. S. Shin, S. J. Chi, J. W. Kim, C. W. Oh and S. O. Kim J. Soil & Groundwater Env., 10(1), 43-57 (2005).
  14. K. Y. Choe, G. A. Gill, R. D. Lehman, S. Han, W. A. Heim and K. H. Coale, Limnol. Oceanogr., 49, 1512- 1527 (2004). https://doi.org/10.4319/lo.2004.49.5.1512

Cited by

  1. Tracing metal sources in core sediments of the artificial lake An-Dong, Korea: Concentration and metal association vol.527-528, 2015, https://doi.org/10.1016/j.scitotenv.2015.05.013
  2. Historical reconstruction of anthropogenic mercury input from sedimentary records: Yeongsan Estuary, South Korea vol.167, 2015, https://doi.org/10.1016/j.ecss.2015.10.021
  3. Identifying the source of Zn in soils around a Zn smelter using Pb isotope ratios and mineralogical analysis vol.601-602, 2017, https://doi.org/10.1016/j.scitotenv.2017.05.181