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Abstract
We introduce a methodology for the study of the application-level performance of time-sharing parallel jobs on a set of

compute nodes in high performance clusters and report our findings. We assume that parallel jobs arriving at a cluster

need to share a set of nodes with the jobs of other users, in that they must compete for processor time in a time-sharing

manner and other limited resources such as memory and I/O in a space-sharing manner. Under the assumption, we devel-

oped a methodology to simulate job arrivals to a set of compute nodes, and gather and process performance data to calcu-

late the percentage slowdown of parallel jobs. Our goal through this study is to identify a better combination of jobs that

minimize performance degradations due to resource sharing and contention. Through our experiments, we found a cou-

ple of interesting behaviors for overlapped parallel jobs, which may be used to suggest alternative job allocation schemes

aiming to reduce slowdowns that will inevitably result due to resource sharing on a high performance computing cluster.

We suggest three job allocation strategies based on our empirical results and propose further studies of the results using a

supercomputing facility at the San Diego Supercomputing Center.

Category: Smart and intelligent computing

Keywords: Resource sharing; Resource allocation; Time-sharing cluster; Job scheduling; High performance

computing; Percentage slowdown

I. INTRODUCTION

In this paper, we introduce a methodology for the study

of the application-level performance of overlapped paral-

lel processing jobs sharing compute nodes in high perfor-

mance clusters. Throughout this study, we assume that

parallel jobs arriving at a cluster need to share the com-

pute nodes with other jobs, and compete with them for

processor time and other limited resources such as mem-

ory and I/O. For such shared environments, scheduling

studies [1-4] have focused more on system-level perfor-

mance such as throughput and utilization than on applica-

tion or user perspective performance like response time

and slowdown of user jobs completion. Users submitting

parallel jobs to a high performance cluster, however, are

more interested in how fast their applications finish than

in how many applications can run efficiently on the entire

system. Therefore, our study focuses on a user perspec-

tive performance metric, slowdown; i.e., we perform a

comparative performance study on the application slow-
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down and the relative slowdowns of jobs in different job

mix environments.

The percentage slowdown S is calculated simply by

(1)

where Ts is response time in the shared mode and Td is

response time in the dedicated mode. We analyze parallel

job performance by examining the percentage slowdown

due to another parallel job in the same node of the system.

It is worth noting that Weinberg and Snavely [5] took a

similar approach to study slowdown effects by running

two different benchmark jobs at the same time on SDSC’s

DataStar cluster. Our study, however, differs from theirs

in that ours focuses on the time-sharing effects on a set of

single-processor compute nodes while theirs investigates

the space-sharing effects for shared resources such as

memory and I/O on a multiprocessor, multicore node.

In the following sections, we explain the background

of our comparative performance study, and provide the

details of the methodology used for the study. We then

describe the tools developed for the experimentation and

the parallel jobs representing different characteristics of

message passing interface (MPI) jobs. In Section V, we

show the results of a series of concurrent job executions

on a time-sharing, non-dedicated Linux cluster. Then we

explain the setup of an SDSC supercomputing resource for

the future study of the parallel job slowdown. A potential

future extension of this research would be to apply the

conclusion to job management systems and test its appli-

cability in reducing job slowdown rates for superimposed

parallel jobs on a high performance computing (HPC)

cluster.

II. BACKGROUND

The Beowulf cluster system we used for our results was

composed of 16 commodity computers interconnected

via a gigabit Ethernet switch. Each compute node had a

single 2.4 GHz Pentium 4 processor and 1 GB RAM [6].

As each node had one processor, it was a useful test bed

for our study in finding the time-sharing effects of con-

current parallel processes when the execution of these

processes are scheduled by the individual local operating

systems and not an external scheduler. We will refer to

this scheduling scheme as uncoordinated local scheduling

in distributed systems.

There are studies on the pros and cons of various

scheduling schemes especially in the context of cosched-

uling abound. For example, Anglano [1] conducted simu-

lations and reported a large amount of performance

degradation due to the uncoordinated scheduling of pro-

cesses, especially when the parallel application is com-

munication-bound. On the other hand, Wong and Goscinski

[2] claimed that uncoordinated process scheduling does

not introduce extreme performance loss; the overall per-

formance degradation of local scheduling was similar to

gang-scheduling’s performance degradation, and in some

cases, local scheduling worked better than gang-schedul-

ing. Currently, the advantage of coordinated scheduling

remains unsettled. Consequently more rigorous evalua-

tion of uncoordinated scheduling, especially for applica-

tion-level performance, is needed.

To better understand the application-level performance

degradation, we investigated the performance impact due

to the communication and computation characteristics of

parallel jobs. We chose four jobs from the NAS Parallel

Benchmark (NPB): IS, EP, CG, and MG [7]. All four jobs

have distinctive characteristics in communication and

computation. We explain the details of their characteris-

tics in Section IV.

Our experiment procedure is simple and straightforward.

First, we execute a new job (injected job) while another

job (base job) is running on a set of compute nodes. While

those two jobs are running at the same time, we sample

their runtime statistics, average system load, and the

number of packets they send and receive. After both of

the parallel jobs finish their execution, we examine the

data to make sure that the injected job left the system

prior to the base job; this is to ensure that the statistics for

injected job’s slowdown is not biased due to dedicated

runs of the injected job in case of the base job’s early ter-

mination. Finally, we analyze the data to calculate slow-

down of the injected job for different base jobs.

This controlled experiment is designed to collect nec-

essary empirical data for the performance analysis of a

single injected job of given characteristics when it is run-

ning in an environment with a single base job of certain

characteristics. It may be possible to run multiple base

jobs with multiple injected jobs on a set of nodes to simu-

late a shared computing environment (e.g., [8]). Running

multiple base jobs and multiple injected jobs, however,

will complicate the experiment, making it difficult to

identify the factors responsible for performance degrada-

tion. Therefore, throughout our comparative performance

study, we examined two single jobs (an injected job and a

base job) sharing a set of nodes and found the perfor-

mance degradation patterns due to the interference which

arose from their demand on the shared resources. In the

next section, we explain our methodology in detail.

III. METHODOLOGY FOR PERFORMANCE
STUDY

It is obvious that a job injected into a system while a

base job is running will have to time share the processor

and compete for other limited resources. Both jobs are

therefore expected to experience performance degrada-

tion. The only question is how much. To find an answer,

using our tools, we ran a series of tests and took measur-

S
Ts Td–

Td
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able data. In these experiments we measure and report

only the performance degradation of the injected jobs

since they are the jobs we can ensure to have run in a

shared resource environment from start to stop.

The tools include a parallel /proc file scanner and a

simulation driver. The parallel /proc file scanner scans and

parses /proc/net/dev and /proc/stat virtual system files at

every sampling time. The /proc/net/dev virtual system

file contains network volume counts such as the number

of bytes and packets it received and transmitted. The /proc/

stat file keeps track of the amount of time that the CPU

has spent in user mode, nice mode, system mode, idle

task and interrupt services. The /proc virtual system file

approach, however, is only meaningful for coarse grain

time resolution of 100 ms or larger. This coarse grain

sampling time resolution works fine for the purpose of

our data sampling because we are interested in applica-

tion level statistics, not network link-level statistics. Fre-

quent access to /proc file is not recommended because the

scanner may affect the processor time of the jobs being

monitored.

The second tool, simulation driver, was originally devel-

oped to spawn a series of different parallel jobs arriving

at the system according to a user-defined job arrival time

distribution. This creates a multi-user environment under

the assumption of processor timesharing on compute nodes

without any particular job scheduling scheme to manage

job allocation. With the tool, we were able to generate

reproducible and controllable system loads in both com-

putation and communication to study and model network

traffic and resource contention incurred by multi-user

driven parallel jobs [8].

For this comparative performance study, the simulation

driver was modified to execute a predefined set of paral-

lel jobs in regular time intervals. This allowed us to con-

sistently inject a new job at the right time for multiple

tests so that we could calculate the average slowdown for

the same combination of jobs with consistency.

The parallel jobs we tested were taken from NPB ker-

nels that contain jobs with different computation and

communication characteristics. The NPB suite (ver. 2.4)

consists of eight benchmark problems: five numerical

algorithm kernels (CG, EP, IS, MG, and FT) and three

simulated computational fluid dynamics applications (SP,

BT, and LU). Each benchmark problem has five levels of

problem sizes: S, W, A, B, and C from small to large

problem size, respectively. We collected their computa-

tion and communication data to categorize them in terms

of processor and network usage patterns. We then picked

four of them to represent four types of parallel jobs: EP,

IS, CG, and MG. In the next section, we illustrate the

characteristics of the four NPB jobs.

IV. CHARACTERISTICS OF EP, IS, CG, AND
MG

The four benchmark kernels, EP, IS, CG, and MG, have

distinguishable characteristics in processor usage and

message passing communication usage: computation-

bound job (EP), communication-bound job (IS), commu-

nication-bound mixture job (CG), and computation-bound

mixture job (MG). Fig. 1 illustrates these characteristics

in a diagram.

The EP benchmark uses all of the available processor

power with a couple of negligible communications. On

the other hand, the IS benchmark extensively uses collec-

tive communication for sorting. The MG and CG bench-

marks use both computation and communication in their

executions. MG takes more processor power during its

computation than CG does; MG uses 70-80% of the pro-

cessor for its computation for class B, while CG uses

only 40-50% for class B. We attempted to compare them

in both class A and class B problem sizes because the two

classes were proper size problems for our Beowulf clus-

ter test bed.

A. Computation-Bound Job: EP

The embarrassingly parallel (EP) benchmark kernel is

highly parallelized for computation and has negligible

communication throughout its execution. This benchmark

tests floating point operation performance by generating a

large number of pseudorandom numbers concurrently on

multiple nodes. The EP benchmark does communications

in its initial stage using the MPI_Barrier and in its final

stage using four back-to-back MPLAllreduce calls. The

Fig. 1. Four representative parallel jobs and their characteristics
according to computation and communication. IS: integer sort,
CG: conjugate gradient, MG: multi-grid, EP: embarrassingly parallel. Fig. 2. A dedicated embarrassingly parallel (EP, class B) run.
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collective communication overhead is negligible com-

pared to its computation part. In terms of CPU utilization,

the EP kernel utilizes almost 100% of the CPU resource

during its entire execution due to the computation-bound

characteristic of this kernel.

A comprehensive description of the EP kernel's behav-

ior is depicted in Fig. 2. The plot shows synchronized

CPU usage and communication activities in one figure.

In Fig. 2, the left vertical axis indicates CPU utilization

levels (marked by the ‘x’ marking symbols in the plot) at

the time of sampling. The right vertical axis represents

the number of packets indicated by the impulse bars in

the plot. The red horizontal line with h and end points

shows the starting and ending of the job. Notice that the

CPU usage of the EP kernel is 100% and the average

number of packets per 2-second period is approximately

10. Fig. 2 visually confirms that EP is a highly computa-

tion-bound job.

B. Communication-Bound Job: IS

The integer sort (IS) kernel benchmark uses collective

communication calls (MPLAlltoall, MPI_Alltoallv, MPLA-

llreduce, and MPLReduce) throughout its execution, with

an exception of a few point-to-point communications

(MPLSend, MPI_wait, and/or MPLIrecv) at the finaliz-

ing stage. Moreover, IS sends and receives a huge num-

ber of small size messages (≈ 1 kB) for the parallel sorting

of integers, which are generated separately on other

nodes at the initial computation period. The IS bench-

mark represents a communication-bound job since it uses

only about 8% of the CPU time throughout its execution

on average.

Fig. 3 shows a visualization of IS kernel’s runtime data

in the dedicated mode. Notice that the number of packets

received is almost 60,000 in 2 seconds during communi-

cation peak times.

C. Mixture Jobs: CG and MG

So far we have seen two extreme cases, computation-

bound EP kernel and communication-bound IS kernel. In

this section, we investigate the computation and commu-

nication characteristics of two mixture jobs, CG and MG.

The conjugate gradient (CG) kernel can be categorized

as a communication-bound mixture job due to its lower

processor usage level compared to the multi-grid (MG)

kernel, and a smaller number of packet transmissions

than IS for the class A and B problems. The CG bench-

mark mainly performs point-to-point communications

throughout its parallel execution at (almost) uniform

intervals; an exception is one MPLReduce call at its

finalizing stage.

Fig. 4 shows that the CPU utilization is about 50%

throughout the CG benchmark’s runtime. Our measure-

ments show that the number of packets a node receives in

each 2-second interval is around 11,000. In contrast, the

packet transmission rate of the IS kernel is about 55,000

packets per 2-second interval during communication peak

Fig. 3. A dedicated integer sort (IS, class B) run.

Fig. 4. A dedicated conjugate gradient (CG, class B) run.

Fig. 5. A dedicated multi-grid (MG, class B) run.
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times. The CG benchmark regularly sends and receives

messages in three sizes: small-size messages (8 bytes and

16 bytes) and two types of big-size messages (56,000

bytes for class A and 300,000 bytes for class B).

On the other hand, the MG benchmark can be catego-

rized as a computation-bound mixture job because its

CPU utilization level is relatively high (around 70%) for

class A and class B problems, and it also does a fair

amount of communication as shown in Fig. 5. The MG

benchmark performs a number of point-to-point commu-

nications along with several collective communications

throughout its execution. Unlike the CG benchmark, the

communication pattern (or occurrences) of the MG

benchmark is not uniform and the size of messages varies

widely. Therefore, the amount of calculation time

between data exchange calls also varies for different data

exchange sizes.

V. RESULTS FROM THE COMPARATIVE
PERFORMANCE STUDY

Using the methodology and tools described in the pre-

vious sections, we collected performance data from the

Beowulf cluster and analyzed them to gain insights for

better resource allocation strategies of parallel jobs shar-

ing the processor and other resources on a compute node

(or a set of compute nodes). Table 1 presents the slow-

down of the injected jobs (in three different problem

sizes) for different base jobs. The numbers are the aver-

age percentage slowdown calculated by Equation 1 with

data collected from multiple simulation runs.

The EP benchmark experienced the least amount of

slowdown when injected to the system where IS, CG or

MG were running. The EP took twice the time it would

take in the dedicated mode when it was injected to the

system where another EP was running. This was a natural

consequence because the Linux local scheduler gave the

same priority to both the base job and the injected job.

Such computation-bound jobs exploit 100% of the CPU

time whenever the CPU is assigned to them. Hence, the

runtime should be doubled from the dedicated runtime

when there are two such jobs in the system competing.

Noticeably, the slowdown was almost negligible when

EP was injected to the node where a communication-

bound job (e.g., IS) was already running. With mixture

jobs (i.e., CG and MG), the EPs performance experienced

relatively small degradation (<35%). Therefore, we may

conclude that highly computation-bound jobs like the EP

kernel would not be prone to slowdown due to sharing

the processor and other resources with another type of job

on time-sharing Linux clusters.

The communication-bound IS benchmark worked sat-

isfactorily with mixture jobs; its completion was delayed

by less than 48% of dedicated runs for reasonable size

problems (class A and B). Hence, if a communication-

bound job needs to run with other jobs on a cluster sys-

tem, the job management system would want to allocate

it to a set of nodes (or a part of a set of nodes) where a mix-

ture job is running to ensure the least performance degra-

dation of the communication-bound job due to resource

sharing.

The IS class B, however, experienced an unacceptable

amount of slowdown with the computation-bound base

job; it finished its computation and communication almost

ten times slower than its dedicated mode runs on average.

Fig. 6 depicts an instance of such extreme delays. It

shows that the base job (EP class C) started at around

1,325 seconds and the injected job, IS class B, launched

100 seconds later at around 1,425 seconds. The pattern of

the communication packets transmitted per sampling

time is clearly different from its dedicated run (Fig. 3)

throughout the life of the shared IS execution. We studied

the extreme case more carefully and found that the per-

formance of sending and receiving a large number of

small messages using point-to-point communication depends

largely on the MPI message protocol especially under

heavy CPU loads. The lamd request progression interface

(RPI)  module in LAM/MPI helped reduce the delay sub-

stantially although the lamd module was considered to be

a slow protocol scheme due to its asynchronous user dat-

agram protocol (UDP)-based message passing [9].

Among all kinds of base jobs, the communication-

bound mixture job (CG) experienced the largest perfor-

mance degradation with the communication-bound job

(IS). The reason for CG’s largest slowdown rate with IS

may be attributed to the timing mismatch created by the

high-rate packet transmission of the IS benchmark inter-

fering with the structured (synchronized) communication

pattern of the CG benchmark.

The CG experienced less slowdown with MG than

with communication-bound or computation-bound jobs.

Fig. 6. A shared integer sort (IS, class B) run with a highly
computation-bound job, embarrassingly parallel (EP, class C). The
two horizontal red lines in the plot indicate that the two jobs, EP
and IS, were concurrently running at the time of sampling.
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This property led us to conclude that if a communication-

bound mixture job needs to be assigned to a set of nodes

to share resources on it, running with another mixture job

would be the best choice. Similarly, the computation-

bound mixture job (MG) works better with CG than any

other kind of job, yielding less than 38% of slowdown for

reasonably large problems (classes A and B). Therefore, the

job placement strategy for CG also applies to MG.

Additionally, from Table 1, notice that the MG class B

benchmark experienced substantial performance degra-

dation when it was injected to a node where a computa-

tion-bound job was running; the slowdown rate of MG

with EP was 654%. In [6], we also showed that the slow-

down may be less severe when different communication

protocol schemes were used as in the extreme case of IS

(class B) over EP.

VI. FUTURE WORK

The results from our comparative performance study

clearly showed that the slowdown rates largely depend on

the characteristics of the base jobs running concurrently

on a set of compute nodes when processor time-sharing

was allowed. With our empirical results and tools in

hand, the next phase of our study is to expand our meth-

odology to HPC clusters with multiple multicore nodes

(multi-CPU), multicore nodes for both time-sharing and

space-sharing performance study. To this end, we have

begun gathering performance data of NPB jobs from San

Diego Supercomputer Center’s Trestles.

Trestles is a dedicated XSEDE (a single, virtual cyber-

infrastructure that is composed of high performance and

high throughput computing resources shared by scien-

tists; http://www.xsede.org) cluster having 324 nodes and

over 20 TB memory with quad data rate (QDR)  InfiniBand

interconnection. Each node has 32 processor cores (four

8-core AMD Magny-Cours Opteron CPUs). Currently

jobs are managed by the Catalina scheduler [10] and

resources are handled by the TORQUE resource man-

ager. We plan to adopt our simulation model to a cluster

of similar scale and characteristics, and compare perfor-

mance regarding the use of the Catalina scheduler (coor-

dinated scheduling) vs. uncoordinated local scheduling.

VII. CONCLUSION

In this paper, we presented a methodology and the set

of tools for a comparative performance study of time-

sharing parallel jobs on a set of compute nodes. We used

four NPB jobs that represent different types of parallel

jobs on the system. We conducted our experiments by

injecting a parallel job into the system while a base job is

running, and collected performance data during the run.

A combination of different types of injected and base

jobs were used in our experiment. With the collected per-

formance data, slowdowns of the injected jobs were cal-

culated and analyzed, and their relative performance

degradations were identified.

Our empirical results from this methodology led to a

couple of interesting observations relevant to job schedul-

ing. First, highly computation-bound jobs exploit proces-

sor time-sharing so that it suffers relatively little slowdown

when running with other types of jobs in the same nodes.

Second, a highly communication-bound job works rea-

sonably well over mixture jobs with only moderate per-

formance degradation (no more than 50% slowdown for

relatively large problem sizes) though the performance of

the mixture job appears to be significantly impacted by

the communication-bound job when they run simulta-

neously. Last, mixture jobs run faster with mixture jobs

than with highly communication-bound or highly compu-

tation-bound jobs. In any case, when a new job is added

to the compute nodes currently running a base job, both

jobs will suffer performance degradation. The impact on

the base job due to the injected job during the time of

resource sharing can also be found in Table 1 with the

roles of the two jobs reversed.

These observations suggest three simple job allocation

strategies: 1) a highly computation-bound job would be

better scheduled to run on a separate set of nodes as they

substantially impact other types of parallel jobs in the

same node; 2) though a highly communication-bound job

suffers only moderately when running with a mixture job,

the slowdown of the mixture job is rather severe, there-

fore such a combination is desirable when a highly com-

munication-bound job has higher priority over mixture

jobs in the system; and 3) a mixture job may be scheduled

with another mixture job without substantial performance

Table 1. Percentage slowdown (%) of injected MPI jobs for different base jobs

EP injected IS injected CG injected MG injected

Base job W A B W A B W A B W A B

EP 93 100 99 43 102 956 42 88 85 184 89 654

IS 4 2 4 45 81 96 130 141 143 155 72 108

CG 1 5 10 55 14 33 42 51 86 55 18 38

MG 2 32 34 60 14 48 56 32 36 36 78 75

MPI: message passing interface, EP: embarrassingly parallel, IS: integer sort, CG: conjugate gradient, MG: multi-grid.
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impact due to resource sharing. In conclusion, the amount

of performance degradation of a parallel (MPI) job due to

other parallel (MPI) jobs in the same node can be

expressed as “Mixture job > Highly communication-

bound job > Highly computation-bound job.”

We plan to expand our study to include comparative

performance data from multi-core, space-sharing clusters

and to apply our results to job schedulers (e.g., SDSC’s

Catalina scheduler) in order to study its effectiveness and

applicability in reducing slowdown of parallel jobs when

limited resources are shared by multiple parallel jobs.
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