DOI QR코드

DOI QR Code

Snake Venom: A Potent Anticancer Agent

  • Jain, Deepika (IGNOU-I2IT Centre of Excellence for Advanced Education and Research) ;
  • Kumar, Sudhir (IGNOU-I2IT Centre of Excellence for Advanced Education and Research)
  • Published : 2012.10.31

Abstract

Since cancer is one of the leading causes of death worldwide, and there is an urgent need to find better treatment. In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. Treatment modalities comprise radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Currently, the use of chemotherapeutics remains the predominant option for clinical control. However, one of the major problems with successful cancer therapy using chemotherapeutics is that patients often do not respond or eventually develop resistance after initial treatment. This has led to the increased use of anticancer drugs developed from natural resources. The biodiversity of venoms and toxins makes them a unique source from which novel therapeutics may be developed. In this review, the anticancer potential of snake venom is discussed. Some of the included molecules are under clinical trial and may find application for anticancer drug development in the near future.

Keywords

References

  1. AAl-Sadoon MK, Abdel-Maksoud MA, Rabah DM, Badr G (2012). Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (walterinnesia aegyptia ) venom combined with silica nanoparticles: crosstalk between Bcl2 and Caspase 3. Cell Physiol Biochem, 30, 653-65. https://doi.org/10.1159/000341446
  2. Arimura T, Niwa K, Mitani N, et al (1989). A resected case of triple cancer in the uterus, lung and thyroid. Zasshi J: Nihon Kyobu Geka Gakkai, 37, 1233-7.
  3. Armugam A, Cher CD, Lim K, et al (2009). A secretory phospholipase A2-mediated neuroprotection and antiapoptosis. BMC Neuroscience, 10, 120. https://doi.org/10.1186/1471-2202-10-120
  4. Barnett GC, West CM, Dunning AM, et al (2009). Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nature Rev Cancer, 9, 134-42. https://doi.org/10.1038/nrc2587
  5. Baskar R, Lee KA, Yeo R, Yeoh KW (2012). Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 9, 193-9. https://doi.org/10.7150/ijms.3635
  6. Bazaa A, Pasquier E, Defilles C, et al (2010). MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PloS One, 5, e10124. https://doi.org/10.1371/journal.pone.0010124
  7. Berzofsky JA, Terabe M, Wood LV (2012). Strategies to use immune modulators in therapeutic vaccines against cancer. Seminars Oncol, 39, 348-57. https://doi.org/10.1053/j.seminoncol.2012.02.002
  8. Bradbury MW, Deane R (1993). Permeability of the blood-brain barrier to lead. Neurotoxicology, 14, 131-6.
  9. Chien CM, Yang SH, Chang LS, Lin SR (2008). Involvement of both endoplasmic reticulum- and mitochondria-dependent pathways in cardiotoxin III-induced apoptosis in HL-60 cells. Clin and Experimental Pharmacology and Physiology, 35, 1059-64. https://doi.org/10.1111/j.1440-1681.2008.04968.x
  10. Chien CM, Yang SH, Yang CC, et al (2008). Cardiotoxin III induces c-jun N-terminal kinase-dependent apoptosis in HL-60 human leukaemia cells. Cell Biochemistry and Function, 26, 111-8. https://doi.org/10.1002/cbf.1420
  11. Chiu CC, Lin KL, Chien CM, et al (2009). Effects of cardiotoxin III on NF-kappaB function, proliferation, and apoptosis in human breast MCF-7 cancer cells. Oncol Res, 17, 311-21. https://doi.org/10.3727/096504009787721186
  12. Cohen O, Kronman C, Chitlaru T, et al (2001). Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. The Biochem J, 357, 795-802. https://doi.org/10.1042/0264-6021:3570795
  13. Costa LA, Miles HA, Diez RA, et al (1997). Phase I study of VRCTC-310, a purified phospholipase A2 purified from snake venom, in patients with refractory cancer: safety and pharmacokinetic data. Anti-Cancer Drugs, 8, 829-34. https://doi.org/10.1097/00001813-199710000-00003
  14. Cura JE, Blanzaco DP, Brisson C, et al (2002). Phase I and pharmacokinetics study of crotoxin (Cytotoxic PLA2, NSC-624244) in Patients with advanced cancer. Clin Cancer Res, 8, 1033-41.
  15. Debnath A, Chatterjee U, Das M, et al (2007). Venom of Indian monocellate cobra and Russell's viper show anticancer activity in experimental models. J Ethnopharmacology, 111, 681-4. https://doi.org/10.1016/j.jep.2006.12.027
  16. Escalante T, Ortiz N, Rucavado A, et al (2011). Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases. PloS one, 6, 28017. https://doi.org/10.1371/journal.pone.0028017
  17. Faure G, Harvey AL, Thomson E, et al (1993). Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur J Biochem, 214, 491-6. https://doi.org/10.1111/j.1432-1033.1993.tb17946.x
  18. Ferrer (2001). Snake venom: The pain and potential of the venom. The cold blooded news, 28, PAGE?.
  19. Gao W, Starkov VG, Tsetlin VI, et al (2005). Isolation and preliminary crystallographic studies of two new phospholipases A2 from vipera nikolskii venom. Acta crystallographica Ssection F, Structural Biol and Crystallization Commun, 61, 189-92. https://doi.org/10.1107/S1744309104033688
  20. Geissler M, Weth R (2002). (Immunotherapy: new insights). Praxis, 91, 2236-46. https://doi.org/10.1024/0369-8394.91.51.2236
  21. Gomes A, Bhattacharjee P, Mishra R, et al (2010). Anticancer potential of animal venoms and toxins. Indian J Exp Biol, 48, 93-103.
  22. Gomes A, Choudhury SR, Saha A, et al (2007). A heat stable protein toxin (drCT-I) from the Indian Viper (Daboia russelli russelli) venom having antiproliferative, cytotoxic and apoptotic activities. Toxicon: Official J Int Society on Toxinology, 49, 46-56. https://doi.org/10.1016/j.toxicon.2006.09.009
  23. Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P (2011). Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy, 31, 813-28. https://doi.org/10.1592/phco.31.8.813
  24. Kang IC, Lee YD, Kim DS (1999). A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res, 59, 3754-60.
  25. Kang TS, Georgieva D, Genov N, et al (2011). Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J, 278, 4544-76. https://doi.org/10.1111/j.1742-4658.2011.08115.x
  26. Kemparaju K, Girish KS (2006). Snake venom hyaluronidase: a therapeutic target. Cell Biochem Function, 24, 7-12. https://doi.org/10.1002/cbf.1261
  27. Kruger C, Greten TF, Korangy F (2007). Immune based therapies in cancer. Histology Histopathology, 22, 687-96.
  28. Lai D, Visser-Grieve S, Yang X (2012). Tumour suppressor genes in chemotherapeutic drug response. Biosci Reports, 32, 361-74. https://doi.org/10.1042/BSR20110125
  29. Lin KL, Su JC, Chien CM, et al (2010). Down-regulation of the JAK2/PI3K-mediated signaling activation is involved in Taiwan cobra cardiotoxin III-induced apoptosis of human breast MDA-MB-231 cancer cells. Toxicon : Official J Int Society on Toxinology, 55, 1263-73. https://doi.org/10.1016/j.toxicon.2010.01.017
  30. Lokeshwar VB, Selzer MG (2008). Hyalurondiase: both a tumor promoter and suppressor. Seminars in Cancer Biol, 18, 281-7. https://doi.org/10.1016/j.semcancer.2008.03.008
  31. Markland FS, Shieh K, Zhou Q, et al (2001). A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis, 31, 183-91.
  32. Newman RA, Vidal JC, Viskatis LJ, et al (1993). VRCTC-310-a novel compound of purified animal toxins separates antitumor efficacy from neurotoxicity. Invest New Drugs, 11, 151-9. https://doi.org/10.1007/BF00874149
  33. Orentas RJ, Lee DW, Mackall C (2012). Immunotherapy targets in pediatric cancer. Frontiers in Oncol, 2, 3.
  34. Panfoli I, Calzia D, Ravera S, Morelli A (2010). Inhibition of hemorragic snake venom components: old and new approaches. Toxins, 2, 417-27. https://doi.org/10.3390/toxins2040417
  35. Pawelek PD, Cheah J, Coulombe R, et al (2000). The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. The EMBO J, 19, 4204-15. https://doi.org/10.1093/emboj/19.16.4204
  36. Rodrigues RS, Izidoro LF, de Oliveira RJ, et al (2009). Snake venom phospholipases A2: a new class of antitumor agents. Protein and Peptide Letters, 16, 894-8. https://doi.org/10.2174/092986609788923266
  37. Rudd CJ, Viskatis LJ, Vidal JC, Etcheverry MA (1994). In vitro comparison of cytotoxic effects of crotoxin against three human tumors and a normal human epidermal keratinocyte cell line. Invest New Drugs, 12, 183-4. https://doi.org/10.1007/BF00873958
  38. Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA: A Cancer J for Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
  39. Song JK, Jo MR, Park MH, et al (2012). Cell growth inhibition and induction of apoptosis by snake venom toxin in ovarian cancer cell via inactivation of nuclear factor kappaB and signal transducer and activator of transcription 3. Archives of Pharmacal Res, 35, 867-76. https://doi.org/10.1007/s12272-012-0512-1
  40. Su JC, Lin KL, Chien CM, et al (2010). Concomitant inactivation of the epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt and Janus tyrosine kinase 2/signal transducer and activator of transcription 3 signalling pathways in cardiotoxin III-treated A549 cells. Clin and Experimental Pharmacology and Physiology, 37, 833-40.
  41. Tang N, Xie Q, Wang X, et al (2011). Inhibition of invasion and metastasis of MHCC97H cells by expression of snake venom cystatin through reduction of proteinases activity and epithelial-mesenchymal transition. Archives of Pharmacal Res, 34, 781-9. https://doi.org/10.1007/s12272-011-0512-6
  42. Wei JF, Wei XL, Mo YZ, He SH (2009). Induction of mast cell accumulation, histamine release and skin edema by N49 phospholipase A2. BMC Immunol 10, 21. https://doi.org/10.1186/1471-2172-10-21
  43. Yang SH, Chien CM, Chang LS, Lin SR (2008). Cardiotoxin III-induced apoptosis is mediated by Ca2+-dependent caspase-12 activation in K562 cells. J Biochem And Molecular Toxicology, 22, 209-18. https://doi.org/10.1002/jbt.20231
  44. Yang SH, Chien CM, Lu MC, et al (2006). Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Experimental & Molecular Med, 38, 435-44. https://doi.org/10.1038/emm.2006.51
  45. Yang SH, Chien CM, Lu MC, et al (2005). Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway. Clin and Experimental Pharmacology & Physiology, 32, 515-20. https://doi.org/10.1111/j.1440-1681.2005.04223.x

Cited by

  1. Biotoxins for Cancer Therapy vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.4753
  2. IL-12 Regulates B7-H1 Expression in Ovarian Cancer-associated Macrophages by Effects on NF-κB Signalling vol.15, pp.14, 2014, https://doi.org/10.7314/APJCP.2014.15.14.5767
  3. Inhibitory Effects of Cyrtopodion scabrum Extract on Growth of Human Breast and Colorectal Cancer Cells vol.16, pp.2, 2015, https://doi.org/10.7314/APJCP.2015.16.2.565
  4. Snake venom toxins: toxicity and medicinal applications vol.100, pp.14, 2016, https://doi.org/10.1007/s00253-016-7610-9
  5. A study of ribonuclease activity in venom of vietnam cobra vol.59, pp.1, 2017, https://doi.org/10.1186/s40781-017-0145-5
  6. Pelagia noctiluca (Scyphozoa) Crude Venom Injection Elicits Oxidative Stress and Inflammatory Response in Rats vol.12, pp.4, 2014, https://doi.org/10.3390/md12042182
  7. Applications of snake venoms in treatment of cancer vol.5, pp.4, 2015, https://doi.org/10.1016/S2221-1691(15)30344-0
  8. Selective toxicity of Caspian cobra ( Naja oxiana ) venom on liver cancer cell mitochondria vol.7, pp.5, 2017, https://doi.org/10.1016/j.apjtb.2017.01.021
  9. Vipers of the Middle East: A Rich Source of Bioactive Molecules vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102721
  10. Malaysian Cobra Venom: A Potential Source of Anti-Cancer Therapeutic Agents vol.11, pp.2, 2019, https://doi.org/10.3390/toxins11020075