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VAGUE q-IDEALS IN BCI-ALGEBRAS

Yun Sun Hwang and Sun Shin Ahn∗

Abstract. The notion of vague q-ideals of BCI-algebras is intro-
duced, and several properties of them are investigated. Relations
between a vague ideal and a vague q-ideal are discussed. Charac-
terizations of a vague q-ideal are considered.

1. Introduction

Several authors from time to time have made a number of general-
izations of Zadeh’s fuzzy set theory [12]. Of these, the notion of vague
set theory introduced by Gau and Buehrer [3] is of interest to us. Us-
ing the vague set in the sense of Gau and Buehrer, Biswas [2] studied
vague groups. Jun and Park [6,10] studied vague ideals and vague de-
ductive systems in subtraction algebras. In [8], the concept of vague
BCK/BCI-algebras is discussed. S. S. Ahn, Y. U. Cho and C. H. Park
[1] studied vague quick ideals of BCK/BCI-algebras. Y. B. Jun and K.
J. Lee ([7]) introduced the notion of positive implicative vague ideals in
BCK-algebras. They established relations between a vague ideal and a
positive implicative ideals.

In this paper, we also use the notion of vague set in the sense of Gau
and Buehrer to discuss the vague theory in BCI-algebras. We introduce
the notion of vague q-ideal of BCI-algebras and investigate several prop-
erties of them. We study a relation between a vague ideal and a vague
q-ideal. We establish characterizations of a vague q-ideal.

2. Preliminaries

We review some definitions and properties that will be useful in our
results.
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By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2,0) satisfying
the following conditions:

(a1) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(a2) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),
(a3) (∀x ∈ X) (x ∗ x = 0),
(a4) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

In any BCI-algebra X one can define a partial order “≤” by putting
x ≤ y if and only if x ∗ y = 0.

A BCI-algebra X has the following properties:

(b1) (∀x ∈ X) (x ∗ 0 = x).
(b2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y).
(b3) (∀x, y ∈ X) (0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)).
(b4) (∀x, y ∈ X) (x ∗ (x ∗ (x ∗ y)) = x ∗ y).
(b5) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x).
(b6) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y).

A non-empty subset S of a BCI-algebra X is called a subalgebra of X
if x ∗ y ∈ S whenever x, y ∈ S. A non-empty subset A of a BCI-algebra
X is called an ideal of X if it satisfies:

(c1) 0 ∈ A,
(c2) (∀x ∈ A) (∀y ∈ X) (y ∗ x ∈ A ⇒ y ∈ A).

Note that every ideal A of a BCI-algebra X satisfies:

(∀x ∈ A) (∀y ∈ X) (y ≤ x ⇒ y ∈ A).

A non-empty subset A of a BCI-algebra X is called a q-ideal of X if
it satisfies (c1) and

(c3) (∀x, y, z ∈ A)(x ∗ (y ∗ z) ∈ A, y ∈ A⇒ x ∗ z ∈ A).

Note that any q-ideal is an ideal, but the converse is not true in general.

We refer the reader to the book [4] for further information regarding
BCI-algebras.

Definition 2.1.([2]) A vague set A in the universe of discourse U is
characterized by two membership functions given by:

1. A true membership function

tA : U → [0, 1],

and
2. A false membership function

fA : U → [0, 1],
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where tA(u) is a lower bound on the grade of membership of u derived
from the “evidence for u”, fA(u) is a lower bound on the negation of u
derived from the “evidence against u”, and

tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a
subinterval [tA(u), 1 − fA(u)] of [0, 1]. This indicates that if the actual
grade of membership of u is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).

The vague set A is written as

A = {〈u, [tA(u), fA(u)]〉 | u ∈ U},

where the interval [tA(u), 1− fA(u)] is called the vague value of u in A,
denoted by VA(u).

For α, β ∈ [0, 1] we now define (α, β)-cut and α-cut of a vague set.
Recall that if I1 = [a1, b1] and I2 = [a2, b2] are two subintervals of [0, 1],
we can define a relation by I1 � I2 if and only if a1 ≥ a2 and b1 ≥ b2.

Definition 2.2.([2]) Let A be a vague set of a universe X with the
true-membership function tA and the false-membership function fA. The
(α, β)-cut of the vague set A is a crisp subset A(α,β) of the set X given
by

A(α,β) = {x ∈ X | VA(x) � [α, β]}.

Clearly A(0,0) = X. The (α, β)-cuts of the vague set A are also called
vague-cuts of A.

Definition 2.3.([2]) The α-cut of the vague set A is a crisp subset
Aα of the set X given by Aα = A(α,α).

Note that A0 = X, and if α ≥ β then Aα ⊆ Aβ and A(α,β) = Aα.
Equivalently, we can define the α-cut as

Aα = {x ∈ X | tA(x) ≥ α}.

3. Vague q-ideals

For our discussion, we shall use the following notations on interval
arithmetic:
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Let I[0, 1] denote the family of all closed subintervals of [0, 1]. We
define the term “imax” to mean the maximum of two intervals as

imax(I1, I2) := [max(a1, a2),max(b1, b2)],

where I1 = [a1, b1], I2 = [a2, b2] ∈ I[0, 1]. Similarly we define “imin”.
The concepts of “imax” and “imin” could be extended to define “isup”
and “iinf” of infinite number of elements of I[0, 1].

It is obvious that L = {I[0, 1], isup, iinf, �} is a lattice with universal
bounds [0, 0] and [1, 1] (see [2]).

In what follows let X be a BCI-algebra unless specified otherwise.

Definition 3.1.([8]) A vague set A of a BCI-algebra X is called a
vague BCI-algebra of X if the following condition is true:

(d0) (∀x ∈ X)(VA(x ∗ y) � imin{VA(x), VA(y)}).
that is,

tA(x ∗ y) ≥ min{tA(x), tA(y)},
1− fA(x ∗ y) ≥ min{1− fA(x), 1− fA(y)}

for all x, y ∈ X.

Definition 3.2.([8]) A vague set A of X is called a vague ideal of X
if the following conditions are true:

(d1) (∀x ∈ X)(VA(0) � VA(x)),
(d2) (∀x, y ∈ X)(VA(x) � imin{VA(x ∗ y), VA(y)}).
that is,

tA(0) ≥ tA(x), 1− fA(0) ≥ 1− fA(x),

and tA(x) ≥ min{tA(x ∗ y), tA(y)}
1− fA(x) ≥ min{1− fA(x ∗ y), 1− fA(y)}

for all x, y ∈ X.

Proposition 3.3.([8]) Every vague ideal of a BCI-algebra X satisfies
the following properties:

(i) (∀x, y ∈ X)(x ≤ y ⇒ VA(x) � VA(y)),
(ii) (∀x, y, z ∈ X)(VA(x ∗ z) � imin{VA((x ∗ y) ∗ z), VA(y)}).

Definition 3.4. A vague set A of X is called a vague q-ideal of X if
it satisfies (d1) and

(d3) (∀x, y, z ∈ X)(VA(x ∗ z) � imin{VA(x ∗ (y ∗ z)), VA(y)}).
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that is,

tA(x ∗ z) ≥ min{tA(x ∗ (y ∗ z)), tA(y)},
1− fA(x ∗ z) ≥ min{1− fA(x ∗ (y ∗ z)), 1− fA(y)}

for all x, y, z ∈ X.

Example 3.5. Let X := {0, a, b} be a BCI-algebra([9]) in which the
∗-operation is given by the following table:

∗ 0 a b
0 0 0 b
a a 0 b
b b b 0

Let A be the vague set in X defined as follows:

A = {〈0, [0.8, 0.1]〉, 〈a, [0.8, 0.1]〉, 〈b, [0.5, 0.3]〉}.

It is routine to verify that A is a vague q-ideal of X.

Theorem 3.6. Every vague q-ideal of a BCI-algebra X is both a
vague ideal of X and a vague BCI-algebra of X.

Proof. Let A be a vague q-ideal of X. Put z := 0 in (d3). Use (b1),
we have (d2). Hence A is a vague ideal of X.
Putting y := z in (d3), for any x, y, z ∈ X we have

VA(x ∗ z) �imin{VA(x ∗ (z ∗ z)), VA(z)}
=imin{VA(x ∗ 0), VA(z)}
=imin{VA(x), VA(z)}.

It means that A is a vague BCI-algebra of X

The converse of Theorem 3.6 is not true in general as the following
example.

Example 3.7. Let X := {0, a, b, c} be a BCI-algebra([9]) in which
the ∗-operation is given by the following table:

∗ 0 a b c
0 0 c b a
a a 0 c b
b b a 0 c
c c b a 0

Let A be the vague set in X defined as follows:

A = {〈0, [0.7, 0.2]〉, 〈a, [0.5, 0.4]〉, 〈b, [0.5, 0.4]〉, 〈c, [0.5, 0.4]〉}.
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It is routine to verify that A is both a vague ideal of X and a vague
BCI-algebra of X. But it is not a vague q-ideal of X since VA(c ∗ a) =
VA(b) � imin{VA(c ∗ (0 ∗ a)), VA(0)}.

Theorem 3.8. Let A be a vague ideal of a BCI-algebra. Then the
following are equivalent:

(1) A is a vague q-ideal of X.
(2) (∀x, y ∈ X)(VA(x ∗ y) � VA(x ∗ (0 ∗ y)).
(3) (∀x, y, z ∈ X)(VA((x ∗ y) ∗ z) � VA(x ∗ (y ∗ z)).

Proof. (1)⇒(2) Put y = 0 and z = y in (d3). Hence for any x, y ∈ X,
we have

VA(x ∗ y) �imin{VA(x ∗ (0 ∗ y)), VA(0)}
=VA(x ∗ (0 ∗ y)).

(2)⇒(3) Since for any x, y, z ∈ X
((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z)) =((x ∗ y) ∗ (x ∗ (y ∗ z))) ∗ (0 ∗ z)

≤((y ∗ z) ∗ y) ∗ (0 ∗ z)
=(0 ∗ z) ∗ (0 ∗ z) = 0,

we have ((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z)) = 0, it follows from Proposition
3.3(i) that VA(x ∗ (y ∗ z)) � VA((x ∗ y) ∗ (0 ∗ z)) � VA((x ∗ y) ∗ z). Thus
(3) holds.
(3)⇒(1) Using Proposition 3.3(ii) and (3), we have

VA(x ∗ z) �imin{VA((x ∗ y) ∗ z), VA(y)}
�imin{VA(x ∗ (y ∗ z)), VA(y)},

for all x, y, z ∈ X. Thus (d3) holds. Thus A is a vague q-ideal of X.

Theorem 3.9. Let A be a vague ideal of a BCI-algebra X such that

(∀x, y ∈ X)(VA(x ∗ y) � VA(x)).

Then it is a vague q-ideal of X.

Proof. Using (d2) and assumption, we have

VA(x ∗ z) �imin{VA((x ∗ z) ∗ (y ∗ z)), VA(y ∗ z)}
=imin{VA((x ∗ (y ∗ z)) ∗ z), VA(y ∗ z)}
�imin{VA(x ∗ (y ∗ z)), VA(y ∗ z)}
�imin{VA(x ∗ (y ∗ z)), VA(y)}

for all x, y, z ∈ X. Hence (d3) holds. Thus A is a vague q-ideal of X.
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The converse of Theorem 3.9 is not true in general as seen the fol-
lowing example.

Example 3.10. Consider a BCI-algebra X := {0, a, b} and a vague
set A as in Example 3.5. Then A is a vague q-ideal of X, but it does
not satisfy VA(x ∗ y) � VA(x) since VA(0 ∗ b) = VA(b) � VA(0).

Definition 3.11 A BCI-algebra X is said to be associative ([4]) if
(x ∗ y) ∗ z = x ∗ (y ∗ z) for any x, y, z ∈ X. A BCI-algebra X is said to
be quasi-associative ([11]) if (x ∗ y) ∗ z ≤ x ∗ (y ∗ z) for any x, y, z ∈ X.

Every associative BCI-algebra X is quasi-associative, but the con-
verse is not true in general (see [11]).

Proposition 3.12. Let X be a quasi-associative BCI-algebra. Ev-
ery vague ideal of X is a vague q-ideal of X.

Proof. Let A be a vague ideal of X. Since X is a quasi-associative
BCI-algebra, we have (x ∗ y) ∗ z ≤ x ∗ (y ∗ z) for any x, y, z ∈ X. It
follows from Proposition 3.3(i) that VA((x ∗ y) ∗ z) � VA(x ∗ (y ∗ z)). By
Theorem 3.8, A is a vague q-ideal of X.

Proposition 3.12 is not true in general if X is not a quasi-associative
BCI-algebra as seen in the following example.

Example 3.13. Consider a BCI-algebra X = {0, a, b, c} and a vague
set A of X as in Example 3.7. Since (a ∗ b) ∗ c � a ∗ (b ∗ c), X is not a
quasi-associative BCI-algebra. Then A is a vague ideal of X but not a
vague q-ideal of X.

Corollary 3.14. Let X be an associative BCI-algebra. Every vague
ideal of X is a vague q-ideal of X.

Proof. Straightforward.

Theorem 3.15. Let A be a vague q-ideal of a BCI-algebra X. Then
for any α, β ∈ [0, 1], the vague-cut A(α,β) of A is a crisp q-ideal of X.

Proof. Obviously, 0 ∈ A(α,β). Let x ∗ (y ∗ z) ∈ A(α,β) and y ∈ A(α,β).
Then VA(x ∗ (y ∗ z)) � [α, β] and VA(y) � [α, β], i.e., tA(x ∗ (y ∗ z)) ≥
α, tA(y) ≥ α and 1− fA(x ∗ (y ∗ z)) ≥ β, 1− fA(y) ≥ β. It follows that

tA(x ∗ z) ≥ min{tA(x ∗ (y ∗ z)), tA(y)} ≥ α
and

1− fA(x ∗ z) ≥ min{1− fA(x ∗ (y ∗ z)), 1− fA(y)} ≥ β.
Hence x ∗ z ∈ A(α,β) and so A(α,β) is a crisp q-ideal of X.

The ideals like A(α,β) are also called vague cut q-ideals of X.
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Theorem 3.16. Any q-ideal I of a BCI-algebra X is a vague-cut
ideal of some vague q-ideal of X.

Proof. Proof. Consider the vague set A of X given by

VA(x) =

{
[α, α] if x ∈ I
[0, 0] if x /∈ I

where α ∈ (0, 1). Since 0 ∈ I, we have VA(0) = [α, α] � VA(x) for all
x ∈ X. Let x, y, z ∈ X be such that x∗(y ∗z) ∈ I and y ∈ I. If x∗z /∈ I,
then

tA(x ∗ z) = 0 ≤ min{tA(x ∗ (y ∗ z)), tA(y)}

and 1− fA(x ∗ z) = 0 ≤ min{1− fA(x ∗ (y ∗ z)), 1− fA(y)}.

If x ∗ z ∈ I, then

tA(x ∗ z) = α = min{tA(x ∗ (y ∗ z)), tA(y)}

and 1− fA(x ∗ z) = α = min{1− fA(x ∗ (y ∗ z)), 1− fA(y)}.

Thus A is a vague q-ideal of X. Clearly, I = A(α,α).

Theorem 3.17. Let A be a vague q-ideal of a BCI-algebra X. Then
the set

I := {x ∈ X|VA(x) = VA(0)}

is a crisp q-ideal of X.

Proof. Clearly, 0 ∈ I. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ I and
y ∈ I. Then VA(x ∗ (y ∗ z)) = VA(0) and VA(y) = VA(0) and so

VA(x ∗ z) � imin{VA(x ∗ (y ∗ z)), VA(y)} = VA(0).

Since VA(0) � VA(x) for all x ∈ X, it follows that VA(x ∗ z) = VA(0).
Hence x ∗ z ∈ I. Therefore I is a crisp q-ideal of X.
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