
Copyright 2011 KIEEME. All rights reserved. http://www.transeem.org278

† Author to whom all correspondence should be addressed:
E-mail: hkahn@konkuk.ac.kr

Copyright 2012 KIEEME. All rights reserved.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial
License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

A Vector Instruction-based RISC Architecture for a
Photovoltaic System Monitoring Camera

Youngho Choi and Hyungkeun Ahn

Department of Electrical Engineering, Konkuk University, Seoul 143-701, Korea

Received September 4, 2012; Accepted September 12, 2012

Photovoltaic systems have emerged to be one of the cleanest energy systems. Therefore, many large scale solar parks
and PV farms have been built to prepare for the post fossil fuel ages. However, due to their large scale, to efficiently
manage and operate PV systems, they need to be visually monitored within the range of infrared ray through the
Internet. To satisfy this need, the efficient implementation of a high performance video compression standard is
required. This paper therefore presents an implementation of H.264 motion estimation, which is one of the most
data-intensive and complicated functions in H.264. To achieve this, this work implements vector instructions in
hardware and incorporates them in a generic RISC processor architecture, thus increasing the processing speed
while minimizing hardware and software design efforts. Extensive simulation results show that this proposed
implementation can process motion estimations up to 13 times faster.

Keywords: Photovoltaic, Monitoring, Infrared ray images, RISC, Vector instruction

Regular Paper

TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS

Vol. 13, No. 6, pp. 278-282, December 25, 2012

1. INTRODUCTION

Photovoltaic systems have emerged to be one of the cleanest
energy systems. Therefore, many large scale solar parks and
PV farms have been built to prepare for the post fossil fuel age.
However, due to their large scale, in order to trace the degrada-
tion process of the system, and thus to efficiently manage it,
PV systems need to be monitored visually through the Internet
[1-3].

In such a visual monitoring system, a camera takes infrared
ray images of PV modules and cells to identify damages in real
time and transmits these images to monitoring centers. To do
this effectively and economically, efficient video compression
algorithms are required, which reduce the amount of data to
be transmitted and stored. For this purpose, many video com-
pression standards such as MPEG2, MPEG4, and H.264 [4-6]
have been proposed and used over the last few decades. Among
them, H.264 has the highest compression efficiency as it was

developed most recently. However, since its high compression
efficiency is mainly due to its high computation complexity, it is
very difficult to implement it in software for real-time applica-
tions such as photovoltaic monitoring systems. To resolve this
problem, and thus to provide real-time video compression en-
coding with minimal quality degradation, full hardware design
solutions have been proposed [7,8]. However, these dedicated
hardware architectures have less flexibility and a long time-to-
market period.

In order to increase design flexibility, a co-design approach
based on a reconfigurable platform has recently been proposed
[9,10]. One of these works [9] proposes an algorithm which auto-
matically partitions and schedules tasks for hardware and soft-
ware. Because the run-time reconfigurable processing elements
(PEs) of this algorithm can contain any specific data-dominated
tasks, various combinations of PEs provide flexibility and reus-
ability of hardware design efforts. However, a sub-optimized
partitioning algorithm using automated tools degrades the
performance of a co-design system compared to hand-made
designs. In addition, its task manager algorithm which performs
scheduling in the task unit means the system is limited in the
parallel processing of the instruction unit and thus performance
degradation occurs.

pISSN: 1229-7607 eISSN: 2092-7592
DOI: http://dx.doi.org/10.4313/TEEM.2012.13.6.278

279Trans. Electr. Electron. Mater. 13(6) 278 (2012): Y. Choi et al.

To efficiently implement the H.264 compression algorithm,
this paper presents an implementation of H.264 motion estima-
tion, which is one of the most complicated and data-intensive
tools of H.264. To minimize hardware design efforts, this work
first identifies the necessary vector instructions which are data-
intensive and frequently executed in the motion estimation of
H.264, and are thus required to be implemented in the hardware.
This allows us to limit our hardware design efforts only in these
vector instructions, eliminating the need for a full hardware
design. After the vector instructions are implemented in the
hardware, they are incorporated into a generic RISC architecture
with an out-of-order execution scheduler. Because the generic
RISC processor can support pre-existing software development
environments and instruction sets as well as newly-added vec-
tor instructions, the software programmers then only need to
replace the complicated and data-intensive functions with the
newly-added vector instructions. This enables to minimize ad-
ditional software design efforts and thus, exploits the benefits of
both software and hardware design solutions, i.e., flexibility and
performance.

In Section 2, this paper describes the specifications of H.264
motion estimations, and in Section 3 the implementation of the
H.264 motion estimations is described. Section 4 evaluates the
performance of the implementation and Section 5 concludes
this work.

2. DESIGN SPECIFICATIONS OF H.264
MOTION ESTIMATION

As a state-of-the-art video coding standard, H.264 provides
a maximum increase in compression efficiency of 50% over a
wide range of bit rates and video quality compared to previous
standards. However, the H.264 is about 10 times more complex
than a corresponding MPEG-4 standard [11]. Specifically, to re-
duce the temporal redundancy between successive pictures, the
motion estimation algorithm is improved by adopting a variable
block size for motion compensation and higher motion vector
resolutions.

Compared to previous video coding standards, H.264 has
a variable block size motion estimation scheme to represent
one macroblock. Fig. 1 shows the candidate macroblock and
sub-macroblock partitioning from the Inter16×16 mode to the
Inter4×4 mode. A macroblock is composed of 16×16 pixels, and
it can be divided into two 16×8 partitions, two 8×16 partitions
or four 8×8 partitions. If the 8×8 partitions are selected, each of
the four 8×8 sub-macroblocks within the macroblock may be
split a further 4 ways as shown in Fig. 1(b). The results of the
iterative partition motion search to find the best mode showed
that the complexity and computation load of motion estimation
increased, and consumed 60%~80% of the total H.264 encoding
time [11].

3. IMPLEMENTATION OF H.264 MOTION
ESTIMATION MODULE

To efficiently implement an H.264 motion estimation module,
which is one of the most complicated tools in H.264, this study
employs a vector instruction-based RISC architecture. For this
design, this study first defines the vector instructions that are
very complicated and consume a lot of execution time, and thus
need to be implemented in hardware. To identify the vector in-
structions, the Intel Vtune performance analyzer 8.0 is utilized,
which selects the most frequently called and complicated func-
tions. Once such vector instructions are determined, only these

instructions are implemented in the hardware and incorporated
into a generic out-of-order executable RISC. Since this processor
provides a programmer with vector instructions, corresponding
to the complicated functions of H.264, the programmer does not
need to change the previously-open H.264 algorithm code, and
instead replaces the most frequently-called and complicated
functions of H.264 with implemented vector instructions. Con-
sequently, this co-design methodology enables hardware and
software design efforts to be minimized, this reducing the cost
and time-to-market period. More details about this design pro-
cess are given in the following subsections.

3.1 Identification of vector instructions

To define vector instructions for H.264 motion estimation, this
work profiles the JM 10.1 reference software using the Intel Vtune
performance analyzer 8.0. From the profiling result of H.264 mo-
tion estimations, 6 vector instructions are selected which are the
most data-intensive and the most frequently used, as shown in
Fig. 2: (1) 4×4SAD, (2) SATD, (3) 4×4RD, (4) 4×4RD2, (5) NAC, and
(6) NAC2.

4×4SAD is a vector instruction which calculates the sum of ab-
solute differences on two 4×4 matrixes. This instruction is used
for integer-pixel searches to perform motion estimations. Since
the 4×4SAD instruction is executed on the smallest pixel ma-
trixes, i.e., 4×4 matrixes, this instruction can support any kind of
H.264 variable block size such as 16×16, 16×8, 8×16, …, 4×4. This
eliminates the need for additional vector instructions and makes
the design of an H.264 motion estimation efficient.

SATD is a vector instruction which calculates the sum of the
absolute transformed differences, and is frequently used for sub-
pixel searches of motion estimations. Additionally, this vector
instruction can be used to implement another important H.264
function, i.e., DCT4×4.

Since the data size of the 4×4SAD and SATD instructions se-
lected above is in the form of a 4×4 block, data from the main
memory to the vector registers should be 4×4 vectors. Further-
more, before the 4×4SAD and SATD are calculated, their source
data should be loaded into a cache as soon as possible. There-
fore, the 4×4RD and 4×4RD2 vector instructions need to be sup-
ported. 4×4RD reads the 4×4 vector data from memory into both
a lower level cache and a vector register, which are frequently
used for integer-pixel searches of motion estimations, while
4×4RD2 is very similar to 4×4RD but is used for sub-pixel search-
es of motion estimations. Furthermore, 4×4RD and 4×4RD2 can
be used to implement other functions in motion estimation pro-
cesses.

Many types of memory address pointers can be used to cal-
culate the image blocks in H.264 motion estimations. Since the

Fig. 1. Macroblock (MB) and Sub-MB partitions for motion estima-
tion.

016

16 168 8

8

8

8

8

8 8

16 0 1

0

1

10

32

(a) Macroblock partitions: 16x16, 8x16, 16x8, 8x8

08

8 84 4

4

4

4

4

4 4

8 0 1

0

1

10

32

(b) Macroblock sub-partitions: 8x8, 4x8, 8x4, 4x4

MB
partition

Sub-MB
partition

Trans. Electr. Electron. Mater. 13(6) 278 (2012): Y. Choi et al.280

address of macroblocks or sub-macroblocks in one picture is
frequently operated and moved to the next address in motion
estimations, this work also defines NAC and NAC2 as vector
instructions. NAC calculates the addresses for the next memory
pointer and is used for integer-pixel searches while NAC2 is used
for sub-pixel searches.

3.2 HW/SW co-design of H.264 motion estimation

To present an implementation of H.264 motion estimations,
this work employs a general purpose RISC (Reduced Instruction
Sets Computer) processor, out-of-order scheduler, main memory
(SDRAM), L1/L2 Cache (SRAM), common data and control bus,
hardware modules, instruction buffers (Queue), and register files
to support vector or normal scalar instructions. Additionally, all
the vector instructions identified in the previous subsection are
incorporated in the out-of-order executable RISC processor as
shown in Fig. 3. To support an out-of-order execution for vector
instructions, the Tomasulo’s algorithm [12], with reservation sta-
tions, is used.

As shown in Fig. 3, instructions are sent from L1 I-Cache into
the instruction queue, where instructions are issued in a FIFO
order by an instruction memory controller. Reservation sta-
tions include information used for detecting data dependencies
among predefined vector instructions (hardware tasks) as well as
general instructions (software tasks). This information enables
both vector instructions and normal scalar instructions to be ex-
ecuted in an out-of-order fashion. The load buffers and the store
buffers shown in Fig. 3 enable memory data accesses to reorder,
reducing memory blocking. The data path and the control path
shown in Fig. 3 are built to communicate through the common
data and control bus.

The architecture presented in this work can be easily extended
and customized for a wide range of video applications by reform-
ing the vector instruction sets shown in Fig. 4. Moreover, because
this architecture supports not only newly defined vector instruc-
tions but also general scalar instructions, software engineers do
not need to fully understand the specific hardware architecture
using MMX or VLIW technology to optimize the software imple-
mentation for a target specification. The software engineer only
needs to replace the identified data-intensive functions with the
associated vector instructions, minimizing the effort of program-
ming and optimizing. Fig. 4 shows an example code of a partial
motion estimation function.

4. PERFORMANCE EVALUATION

To verify and evaluate the performance of the presented im-

plementation of the H.264 motion estimation function, this work
employs the SimpleScalar simulator, which is developed and
supported by T. Austin at SimpleScalar LLC [13].

SimpleScalar is an execution-driven simulator and supports
an out-of-order executable and user-extensible instruction for-
mat [14]. Therefore, our identified vector instructions and the
out-of-order execution scheduler are well incorporated into this
simulator. As shown in Fig. 4, JM 10.1 [15] is modified by using
newly added vector instructions. Additionally, to verify the per-
formance of the presented implementation, this paper defines
three test conditions and performs them in the SimpleScalar
simulator. Under the first condition, motion estimations are
performed using an in-order execution scheduler without vector
instruction sets. Under the second condition, motion estima-
tions are performed using an in-order execution scheduler with
a vector instruction set. The third condition uses an out-of-order
execution scheduler with a vector instruction set. In a simulation

Fig. 2. Profiling results for motion estimation by Intel Vtune Analyzer.

Fig. 3. An implementation of the out-of-order executable RISC archi-
tecture with vector instructions.

Fig. 4. An example code of H.264 motion estimation using vector in-
structions.

Main Memory(SDRAM)

General & Primitive
Instruction Decoder &

Out-of-Order Scheduler

Vector
Instruction
Execution

Unit2

Vector
Instruction
Execution

Unit1

L1 D-Cache(SRAM) L1 I-Cache(SRAM)

Instruction Queue

Instruction
Memory Controller

Reservation

Station

Reservation

Station

Common Data Bus

Vector

Register File

General
Instruction
Execution

Unit

Reservation

Station

Control

Registers

Store Buffers

General

Register File

Load Buffers 2

1

3

2

1

3

Control Bus

L2 D-Cache(SRAM) L2 I-Cache(SRAM)

for (y=0, abort_search=0; y<blocksize_y && !abort_search; y+=4)
{
 for(x=0; x<blocksize_x; x+=4)
 {
 // NAC
 __asm__ __volatile__ (
 "add/15:0(11) $10, $8, $9\n\t" // nac.i $vr10, $vr8, $vr9
 :"=r"(pOrig_pic), "=r"(pRef_pic)
 :"r"(img_width), "r"(img_height),"r"(cand_x),"r"(cand_y),
 "r"(x),"r"(y),"r"(orig_pic[y]),"r"(ref_pic)
 :"8", "9", "10"
);

 // 4x4SAD
 __asm__ __volatile__ (
 "add/15:0(3) $3, %1, %3\n\t" // ll4x4.pi $pr3, pOrig_pic, 16
 "add/15:0(3) $4, %2, %4\n\t" // ll4x4.pi $pr4, pRef_pic, img_width
 "add/15:0(1) %0, $3, $4\n\t" // sad.pi t_mcost, $pr3, $pr4
 :"=r"(t_mcost)
 :"p"(pOrig_pic), "p"(pRef_pic), "r"(16), "r"(img_width)
 :"3", "4"
);
 mCost += t_mcost;
 }
}

281Trans. Electr. Electron. Mater. 13(6) 278 (2012): Y. Choi et al.

process, this work assumes that the vector instructions defined
in the previous chapter are executed in one clock cycle because
of their dedicated hardware units.

Additionally, the following features are assumed: (1) 4:2:0 YCb-
Cr format and QCIF (176×144) resolution, (2) full search algo-
rithm, (3) 16 pixel motion vector search range, (4) 1/4 pixel mo-
tion vector resolution per one macroblock, (5) matching criteria:
SAD for integer-pixel search, and SATD for sub-pixel search, and
(6) 5 reference frames.

The simulation results of the presented implementation of
H.264 motion estimation are given in Fig. 5. In the original H.264
with an in-order issue structure, the total cycles are 22.57 billion
cycles, but after the partial function blocks of motion estimation
are replaced by the proposed vector instructions, the perfor-
mance is increased by 4.93 times under the same in-order execu-
tion scheduler. The main reason for this performance improve-
ment is that the hardware supported vector instructions can
process complicated and data-intensive modules effectively.

Additionally, as shown in Fig. 5(a), the out-of-order executable
RISC with vector instruction sets is approximately 2.62 times
faster than the in-order executable RISC with vector instruc-
tion sets even though both architectures use vector instructions
(vector+outoforder: 1.7 billion cycles, vector+in_order: 4.5 billion
cycles). This is because the out-of-order scheduler boosts up
the performance of the system based on vector instructions by
increasing exploited parallelisms in motion estimations. This is
verified in Fig. 5(b). In Fig. 5(b), the IPCs of motion estimations
under the three conditions are measured. Instruction Per Cycle
(IPC) is a measure used to determine the amount of parallelism
among instructions that is exploited. A higher IPC value means
that the number of instructions (including vector instructions)
performed per one cycle is higher, thus better exploiting the par-

allelism of the given algorithm. As can be seen, the out-of-order
RISC with vector instruction sets increases IPC significantly
compared to the in-order RISC processors (more than 2 times).
This means that even processors with vector instruction sets still
need to exploit out-of-order executions in order to increase per-
formance.

5. CONCLUSION

To enable an efficient photovoltaic monitoring system for
tracing a degradation process of the system, this paper presents
a vector instruction-based RISC architecture and implements
a H.264 motion estimation tool which is a key tool of the H.264
compression standard. This implementation is based on a vector
instruction set and an out-of-order executable RISC architecture,
which can take advantages of software and hardware design
features, i.e., flexibility, low development cost, compactness, and
adequately high performance.

By appropriately defining vector instruction sets, this work can
increase the speed of H.264 motion estimations by up to 13 times
while minimizing design efforts of both hardware and software.
Additionally, since the vector instruction sets comprise a power-
ful codec function library, software engineers can easily use the
vector instructions without fully understanding their specific
hardware architecture to optimize the software implementation
of a target application.

Additionally, this work can be extended to various compres-
sion algorithms efficiently and economically by properly identi-
fying vector instructions and incorporating them into a generic
RISC architecture with an out-of-order execution scheduler.

REFERENCES

[1] D. Sera, R. Teodorescu, P. Rodriguez, Partial Shadowing Detec-
tion based on Equivalent Thermal Voltage Monitoring for PV
Module Diagnostics, IECON, 2009: 708-713 [DOI:http://dx.doi.
org/10.1109/IECON.2009.5415006]

[2] L. Cristaldi, M. Faifer, M. Rossi, F. Ponci, Monitoring of a PV
System, The role of the Panel Model, (IEEE International
Workshop on Applied Measurements for Power Systems, 2011:
90-95[DOI:http://dx.doi.org/10.1109/AMPS.2011.6090437]

[3] G. Notton, V. Lazarov, L. Stoyanov, Optimal Sizing of a Grid-
connected PV System for Various PV Module Technologies
and Inclinations, Inverter Efficiency Characteristics and Loca-
tions, (Renewable Energy 35, 2010:.541-554 [DOI:http://dx.doi.
org/10.1016/j.renene.2009.07.013]

[4] ISO/IEC 13818-2: “Information technology ? Generic coding
of moving pictures and associated audio information: video,”
1996.

[5] ISO/IEC 14496-2: “Information technology ? Coding of audio-
visual objects- part2: Visual,” 1999

[6] ISO/IEC 14496-10: “Coding of Audiovisual Objects-Part 10: Ad-
vanced Video Coding,” Dec. 2003.

[7] M. Irfan, A. K. Khan, and H. Jamal, FPGA based implementa-
tion of MPEG-2 compression algorithm, (IEEE 17th Int. Conf.
On Microelectronics, Dec. 2005:204-244 [DOI: http://dx.doi.
org/10.1109.ICM.2005.1590075]

[8] K. Denolf, C. D. Vleeschouwer, R. Turney, G. Lafruit, and J. Bor-
mans, IEEE Trans. On Circuits and Systems for Video Technolo-
gy, 2005 15(5): 609-619 [DOI: http://dx.doi.org/10.1109/ TCSVT.
2005.846430].

[9] T. Wiangtong, P. Y. K. Cheung, and Wayne Luk, IEEE Signal
Processing Magazine, 2005, 22(3): 14-22 [DOI: http://dx.doi.
org/10.1109/MSP.2005.1425894].

Fig. 5. Simulation results of H.264 motion estimation function (a) To-
tal cycles of motion estimations under three conditions and (b) IPCs
of motion estimations under three conditions.

(b)

(a)

Trans. Electr. Electron. Mater. 13(6) 278 (2012): Y. Choi et al.282

[10] S. D. Haynes, H. G. Epsom, R. J. Cooper, and P. L. McAlpine,
UltraSONIC: A reconfigurable architecture for video image
processing, (Proc. Field-Programmable Logic and Applications,
2002) pp. 482-491.

[11] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F.
Pereira, T. Stockhammer, and T. Wedi, IEEE Circuits and Sys-
tems Magazine 2004 (4): 7-28 [DOI: http://dx.doi.org/10.1109/
MCAS.2004.1286980].

[12] R. M. Tomasulo, IBM Journal of Research and Development
1967 11(1): 25-33 [DOI: http://dx.doi.org/10.1147/rd.111.0025].

[13] SimpleScalar LLC web Site at http://www.simplescalar.com/
[14] T. Austin, E. Larson, and D. Ernst, IEEE Computer Society

Magazine, 2002 35(2): 59-67[DOI: http://dx.doi.org/10.1109/
2.982917].

[15] Reference Software: available at http://iphome.hhi.de/sueh-
ring/tml/

