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Photovoltaic systems have emerged to be one of the cleanest energy systems. Therefore, many large scale solar parks 
and PV farms have been built to prepare for the post fossil fuel ages. However, due to their large scale, to efficiently 
manage and operate PV systems, they need to be visually monitored within the range of infrared ray through the 
Internet. To satisfy this need, the efficient implementation of a high performance video compression standard is 
required. This paper therefore presents an implementation of H.264 motion estimation, which is one of the most 
data-intensive and complicated functions in H.264. To achieve this, this work implements vector instructions in 
hardware and incorporates them in a generic RISC processor architecture, thus increasing the processing speed 
while minimizing hardware and software design efforts. Extensive simulation results show that this proposed 
implementation can process motion estimations up to 13 times faster.
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1. INTRODUCTION 

Photovoltaic systems have emerged to be one of the cleanest 
energy systems. Therefore, many large scale solar parks and 
PV farms have been built to prepare for the post fossil fuel age. 
However, due to their large scale, in order to trace the degrada-
tion process of the system, and thus to efficiently manage it, 
PV systems need to be monitored visually through the Internet 
[1-3]. 

In such a visual monitoring system, a camera takes infrared 
ray images of PV modules and cells to identify damages in real 
time and transmits these images to monitoring centers. To do 
this effectively and economically, efficient video compression 
algorithms are required, which reduce the amount of data to 
be transmitted and stored. For this purpose, many video com-
pression standards such as MPEG2, MPEG4, and H.264 [4-6] 
have been proposed and used over the last few decades. Among 
them, H.264 has the highest compression efficiency as it was 

developed most recently. However, since its high compression 
efficiency is mainly due to its high computation complexity, it is 
very difficult to implement it in software for real-time applica-
tions such as photovoltaic monitoring systems. To resolve this 
problem, and thus to provide real-time video compression en-
coding with minimal quality degradation, full hardware design 
solutions have been proposed [7,8]. However, these dedicated 
hardware architectures have less flexibility and a long time-to-
market period. 

In order to increase design flexibility, a co-design approach 
based on a reconfigurable platform has recently been proposed 
[9,10]. One of these works [9] proposes an algorithm which auto-
matically partitions and schedules tasks for hardware and soft-
ware. Because the run-time reconfigurable processing elements 
(PEs) of this algorithm can contain any specific data-dominated 
tasks, various combinations of PEs provide flexibility and reus-
ability of hardware design efforts. However, a sub-optimized 
partitioning algorithm using automated tools degrades the 
performance of a co-design system compared to hand-made 
designs. In addition, its task manager algorithm which performs 
scheduling in the task unit means the system is limited in the 
parallel processing of the instruction unit and thus performance 
degradation occurs.
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To efficiently implement the H.264 compression algorithm, 
this paper presents an implementation of H.264 motion estima-
tion, which is one of the most complicated and data-intensive 
tools of H.264. To minimize hardware design efforts, this work 
first identifies the necessary vector instructions which are data-
intensive and frequently executed in the motion estimation of 
H.264, and are thus required to be implemented in the hardware. 
This allows us to limit our hardware design efforts only in these 
vector instructions, eliminating the need for a full hardware 
design. After the vector instructions are implemented in the 
hardware, they are incorporated into a generic RISC architecture 
with an out-of-order execution scheduler. Because the generic 
RISC processor can support pre-existing software development 
environments and instruction sets as well as newly-added vec-
tor instructions, the software programmers then only need to 
replace the complicated and data-intensive functions with the 
newly-added vector instructions. This enables to minimize ad-
ditional software design efforts and thus, exploits the benefits of 
both software and hardware design solutions, i.e., flexibility and 
performance. 

In Section 2, this paper describes the specifications of H.264 
motion estimations, and in Section 3 the implementation of the 
H.264 motion estimations is described. Section 4 evaluates the 
performance of the implementation and Section 5 concludes 
this work.

2. DESIGN SPECIFICATIONS OF H.264 
MOTION ESTIMATION

As a state-of-the-art video coding standard, H.264 provides 
a maximum increase in compression efficiency of 50% over a 
wide range of bit rates and video quality compared to previous 
standards. However, the H.264 is about 10 times more complex 
than a corresponding MPEG-4 standard [11]. Specifically, to re-
duce the temporal redundancy between successive pictures, the 
motion estimation algorithm is improved by adopting a variable 
block size for motion compensation and higher motion vector 
resolutions. 

Compared to previous video coding standards, H.264 has 
a variable block size motion estimation scheme to represent 
one macroblock. Fig. 1 shows the candidate macroblock and 
sub-macroblock partitioning from the Inter16×16 mode to the 
Inter4×4 mode. A macroblock is composed of 16×16 pixels, and 
it can be divided into two 16×8 partitions, two 8×16 partitions 
or four 8×8 partitions. If the 8×8 partitions are selected, each of 
the four 8×8 sub-macroblocks within the macroblock may be 
split a further 4 ways as shown in Fig. 1(b). The results of the 
iterative partition motion search to find the best mode showed 
that the complexity and computation load of motion estimation 
increased, and consumed 60%~80% of the total H.264 encoding 
time [11].

3. IMPLEMENTATION OF H.264 MOTION
ESTIMATION MODULE 

To efficiently implement an H.264 motion estimation module, 
which is one of the most complicated tools in H.264, this study 
employs a vector instruction-based RISC architecture. For this 
design, this study first defines the vector instructions that are 
very complicated and consume a lot of execution time, and thus 
need to be implemented in hardware. To identify the vector in-
structions, the Intel Vtune performance analyzer 8.0 is utilized, 
which selects the most frequently called and complicated func-
tions. Once such vector instructions are determined, only these 

instructions are implemented in the hardware and incorporated 
into a generic out-of-order executable RISC. Since this processor 
provides a programmer with vector instructions, corresponding 
to the complicated functions of H.264, the programmer does not 
need to change the previously-open H.264 algorithm code, and 
instead replaces the most frequently-called and complicated 
functions of H.264 with implemented vector instructions. Con-
sequently, this co-design methodology enables hardware and 
software design efforts to be minimized, this reducing the cost 
and time-to-market period. More details about this design pro-
cess are given in the following subsections.

3.1 Identification of vector instructions 

To define vector instructions for H.264 motion estimation, this 
work profiles the JM 10.1 reference software using the Intel Vtune 
performance analyzer 8.0. From the profiling result of H.264 mo-
tion estimations, 6 vector instructions are selected which are the 
most data-intensive and the most frequently used, as shown in 
Fig. 2: (1) 4×4SAD, (2) SATD, (3) 4×4RD, (4) 4×4RD2, (5) NAC, and 
(6) NAC2. 

4×4SAD is a vector instruction which calculates the sum of ab-
solute differences on two 4×4 matrixes. This instruction is used 
for integer-pixel searches to perform motion estimations. Since 
the 4×4SAD instruction is executed on the smallest pixel ma-
trixes, i.e., 4×4 matrixes, this instruction can support any kind of 
H.264 variable block size such as 16×16, 16×8, 8×16, …, 4×4. This 
eliminates the need for additional vector instructions and makes 
the design of an H.264 motion estimation efficient. 

SATD is a vector instruction which calculates the sum of the 
absolute transformed differences, and is frequently used for sub-
pixel searches of motion estimations. Additionally, this vector 
instruction can be used to implement another important H.264 
function, i.e., DCT4×4. 

Since the data size of the 4×4SAD and SATD instructions se-
lected above is in the form of a 4×4 block, data from the main 
memory to the vector registers should be 4×4 vectors. Further-
more, before the 4×4SAD and SATD are calculated, their source 
data should be loaded into a cache as soon as possible. There-
fore, the 4×4RD and 4×4RD2 vector instructions need to be sup-
ported. 4×4RD reads the 4×4 vector data from memory into both 
a lower level cache and a vector register, which are frequently 
used for integer-pixel searches of motion estimations, while 
4×4RD2 is very similar to 4×4RD but is used for sub-pixel search-
es of motion estimations. Furthermore, 4×4RD and 4×4RD2 can 
be used to implement other functions in motion estimation pro-
cesses.

Many types of memory address pointers can be used to cal-
culate the image blocks in H.264 motion estimations. Since the 

Fig. 1. Macroblock (MB) and Sub-MB partitions for motion estima-
tion.
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address of macroblocks or sub-macroblocks in one picture is 
frequently operated and moved to the next address in motion 
estimations, this work also defines NAC and NAC2 as vector 
instructions. NAC calculates the addresses for the next memory 
pointer and is used for integer-pixel searches while NAC2 is used 
for sub-pixel searches.

3.2 HW/SW co-design of H.264 motion estimation 

To present an implementation of H.264 motion estimations, 
this work employs a general purpose RISC (Reduced Instruction 
Sets Computer) processor, out-of-order scheduler, main memory 
(SDRAM), L1/L2 Cache (SRAM), common data and control bus, 
hardware modules, instruction buffers (Queue), and register files 
to support vector or normal scalar instructions. Additionally, all 
the vector instructions identified in the previous subsection are 
incorporated in the out-of-order executable RISC processor as 
shown in Fig. 3. To support an out-of-order execution for vector 
instructions, the Tomasulo’s algorithm [12], with reservation sta-
tions, is used. 

As shown in Fig. 3, instructions are sent from L1 I-Cache into 
the instruction queue, where instructions are issued in a FIFO 
order by an instruction memory controller. Reservation sta-
tions include information used for detecting data dependencies 
among predefined vector instructions (hardware tasks) as well as 
general instructions (software tasks). This information enables 
both vector instructions and normal scalar instructions to be ex-
ecuted in an out-of-order fashion. The load buffers and the store 
buffers shown in Fig. 3 enable memory data accesses to reorder, 
reducing memory blocking. The data path and the control path 
shown in Fig. 3 are built to communicate through the common 
data and control bus.

The architecture presented in this work can be easily extended 
and customized for a wide range of video applications by reform-
ing the vector instruction sets shown in Fig. 4. Moreover, because 
this architecture supports not only newly defined vector instruc-
tions but also general scalar instructions, software engineers do 
not need to fully understand the specific hardware architecture 
using MMX or VLIW technology to optimize the software imple-
mentation for a target specification. The software engineer only 
needs to replace the identified data-intensive functions with the 
associated vector instructions, minimizing the effort of program-
ming and optimizing. Fig. 4 shows an example code of a partial 
motion estimation function. 

4. PERFORMANCE EVALUATION 

To verify and evaluate the performance of the presented im-

plementation of the H.264 motion estimation function, this work 
employs the SimpleScalar simulator, which is developed and 
supported by T. Austin at SimpleScalar LLC [13]. 

SimpleScalar is an execution-driven simulator and supports 
an out-of-order executable and user-extensible instruction for-
mat [14]. Therefore, our identified vector instructions and the 
out-of-order execution scheduler are well incorporated into this 
simulator. As shown in Fig. 4, JM 10.1 [15] is modified by using 
newly added vector instructions. Additionally, to verify the per-
formance of the presented implementation, this paper defines 
three test conditions and performs them in the SimpleScalar 
simulator. Under the first condition, motion estimations are 
performed using an in-order execution scheduler without vector 
instruction sets. Under the second condition, motion estima-
tions are performed using an in-order execution scheduler with 
a vector instruction set. The third condition uses an out-of-order 
execution scheduler with a vector instruction set. In a simulation 

Fig. 2. Profiling results for motion estimation by Intel Vtune Analyzer.

Fig. 3. An implementation of the out-of-order executable RISC archi-
tecture with vector instructions.

Fig. 4. An example code of H.264 motion estimation using vector in-
structions.
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for (y=0, abort_search=0; y<blocksize_y && !abort_search; y+=4)
{
    for(x=0; x<blocksize_x; x+=4)
    {
        // NAC
        __asm__ __volatile__ (
                   "add/15:0(11)  $10, $8, $9\n\t" // nac.i $vr10, $vr8, $vr9
                    :"=r"(pOrig_pic), "=r"(pRef_pic)
                    :"r"(img_width), "r"(img_height),"r"(cand_x),"r"(cand_y),
                      "r"(x),"r"(y),"r"(orig_pic[y]),"r"(ref_pic)
                    :"8", "9", "10"
        );
           
        // 4x4SAD   
        __asm__ __volatile__ (
                   "add/15:0(3)    $3, %1, %3\n\t" // ll4x4.pi $pr3, pOrig_pic, 16
                   "add/15:0(3)    $4, %2, %4\n\t" // ll4x4.pi $pr4, pRef_pic, img_width
                   "add/15:0(1)    %0, $3, $4\n\t"   // sad.pi   t_mcost, $pr3, $pr4
                    :"=r"(t_mcost)
                    :"p"(pOrig_pic), "p"(pRef_pic), "r"(16), "r"(img_width)
                    :"3", "4"
         );   
         mCost += t_mcost;
    }
}
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process, this work assumes that the vector instructions defined 
in the previous chapter are executed in one clock cycle because 
of their dedicated hardware units.

Additionally, the following features are assumed: (1) 4:2:0 YCb-
Cr format and QCIF (176×144) resolution, (2) full search algo-
rithm, (3) 16 pixel motion vector search range, (4) 1/4 pixel mo-
tion vector resolution per one macroblock, (5) matching criteria: 
SAD for integer-pixel search, and SATD for sub-pixel search, and 
(6) 5 reference frames. 

The simulation results of the presented implementation of 
H.264 motion estimation are given in Fig. 5. In the original H.264 
with an in-order issue structure, the total cycles are 22.57 billion 
cycles, but after the partial function blocks of motion estimation 
are replaced by the proposed vector instructions, the perfor-
mance is increased by 4.93 times under the same in-order execu-
tion scheduler. The main reason for this performance improve-
ment is that the hardware supported vector instructions can 
process complicated and data-intensive modules effectively.

Additionally, as shown in Fig. 5(a), the out-of-order executable 
RISC with vector instruction sets is approximately 2.62 times 
faster than the in-order executable RISC with vector instruc-
tion sets even though both architectures use vector instructions 
(vector+outoforder: 1.7 billion cycles, vector+in_order: 4.5 billion 
cycles). This is because the out-of-order scheduler boosts up 
the performance of the system based on vector instructions by 
increasing exploited parallelisms in motion estimations. This is 
verified in Fig. 5(b). In Fig. 5(b), the IPCs of motion estimations 
under the three conditions are measured. Instruction Per Cycle 
(IPC) is a measure used to determine the amount of parallelism 
among instructions that is exploited. A higher IPC value means 
that the number of instructions (including vector instructions) 
performed per one cycle is higher, thus better exploiting the par-

allelism of the given algorithm. As can be seen, the out-of-order 
RISC with vector instruction sets increases IPC significantly 
compared to the in-order RISC processors (more than 2 times). 
This means that even processors with vector instruction sets still 
need to exploit out-of-order executions in order to increase per-
formance. 

5. CONCLUSION 

To enable an efficient photovoltaic monitoring system for 
tracing a degradation process of the system, this paper presents 
a vector instruction-based RISC architecture and implements 
a H.264 motion estimation tool which is a key tool of the H.264 
compression standard. This implementation is based on a vector 
instruction set and an out-of-order executable RISC architecture, 
which can take advantages of software and hardware design 
features, i.e., flexibility, low development cost, compactness, and 
adequately high performance. 

By appropriately defining vector instruction sets, this work can 
increase the speed of H.264 motion estimations by up to 13 times 
while minimizing design efforts of both hardware and software. 
Additionally, since the vector instruction sets comprise a power-
ful codec function library, software engineers can easily use the 
vector instructions without fully understanding their specific 
hardware architecture to optimize the software implementation 
of a target application.

Additionally, this work can be extended to various compres-
sion algorithms efficiently and economically by properly identi-
fying vector instructions and incorporating them into a generic 
RISC architecture with an out-of-order execution scheduler.
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