DOI QR코드

DOI QR Code

Atmospheric Circulation of Pacific-Japan (PJ) and Typhoon-induced Extremes in the Nakdong River Basin

PJ 대기패턴과 태풍에 의한 낙동강 유역의 수문학적 극치 사상의 지역적 특성 변화 분석

  • Kim, Jong-Suk (Department of Civil Engineering, The University of Seoul) ;
  • Yoon, Sun-Kwon (Department of Civil and Environmental Engineering, KAIST) ;
  • Moon, Young-Il (Department of Civil Engineering, The University of Seoul) ;
  • Lee, Joo-Heon (Department of Civil Engineering, Joongbu University)
  • 김종석 (서울시립대학교 공과대학 토목공학과) ;
  • 윤선권 (한국과학기술원 건설 및 환경공학과 미래도시연구소) ;
  • 문영일 (서울시립대학교 공과대학 토목공학과) ;
  • 이주헌 (중부대학교 공과대학 토목공학과)
  • Received : 2012.03.16
  • Accepted : 2012.09.04
  • Published : 2012.12.31

Abstract

The East Asia (EA) region including China, Taiwan, Japan, and Korea are especially vulnerable to hydrometerological extremes during the boreal summer (June-September). Therefore, this study pursued an exploratory analysis to improve better understanding of the potential impacts of the PJ pattern on WNP Tropical cyclone (TC) activity and TC-affected extremes based on the Korean Nakdong River Basin. The results show that during the positive PJ years, the large-scale atmospheric environments tend more favorable for the TC activity than those in the negative PJ years. KP-influenced TCs during the positive (negative) PJ years are likely to occur more southwestward (northeastward), recurve at more northwestward (northeastward) locations, and indicate increase (decrease) in frequency over Korea and Japan. Consequently, TCs making landfall are more exhibited over the southeastern portions of South Korea during the positive PJ years.

한반도를 포함한 동아시아 지역은 여름철에 수문기상학적 극치사상에 취약한 지역이다. 따라서 본 연구에서는 대표적인 동아시아 지역의 대기순환 패턴인 Pacific-Japan (PJ) 패턴을 중심으로 북서태평양 지역의 태풍 활동 특성을 분석하였다. 특히, 한반도에 영향을 미치는 태풍을 중심으로 낙동강 유역의 태풍에 의해 유발된 여름철(June-September) 강수의 지역적 특성 변화를 진단하였다. 분석 결과, 양(+)의 PJ 기간에 발생하는 대기순환패턴의 변화는 태풍의 활동에 보다 유리한 작용을 하는 것으로 나타났다. 한반도에 영향을 미치는 태풍에 대한 진로 분석 결과, 양(+) PJ 기간동안 태풍이 주로 남서쪽으로 향하는 경향이 있으며, 음(-)의 PJ 기간에는 북동쪽으로 향하는 경향이 있는 것으로 나타났다. 태풍 진로의 전향점(recurving location)은 양(+)의 PJ 기간에는 보다 북서쪽에 위치하며, 음(-)의 PJ 기간에는 보다 북동쪽에 치우쳐 있음이 분석되었다. 따라서, 음(-)의 PJ기간 보다 양(+)의 PJ 기간에 태풍의 활동이 활발하며, 낙동강유역에서 태풍에 의한 강수가 통계적으로 유의한 증가패턴이 뚜렷하게 발생하고 있는 것으로 확인되었다.

Keywords

References

  1. Bowman, A.W., and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustations, Oxford University Press, Oxford (UK).
  2. Bowman, A.W., and Azzalini, A. (2007). R Package SM: Nonparametric smoothing Methods (Version 2.2), University of Glasgow, UK and Universita di Padova, Italia.
  3. Chan, J.C.L., and Xu, M. (2009). "Inter-annual and interdecadal variations of landfalling tropical cyclones in East Asia. Part I: time series analysis." Int. J. Climatol. Vol. 29, pp. 1285-1293. https://doi.org/10.1002/joc.1782
  4. Choi, K.S., Kim, B.J., Kim, D.W., and Byun, H.R. (2009). "Interdecadal variation of tropical cyclone making landfall over the Korean Peninsula." Int. J. Climatol. Vol. 30, No. 10, pp. 1472-1483.
  5. Choi, K.S., Wu, C.C., and Cha, E.J. (2010). "Changes of tropical cyclone activity by Pacific-Japan teleconnection pattern in the western North Pacific." J. Geophy sical Research, 115D19114.
  6. Chu, H.J., Kim, T.W., Lee, J.K., and Lee, J.H. (2007). "Seasonal relationship between EL Nino-Southern Oscillation and hydrologic variables in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 4, pp. 299-311. https://doi.org/10.3741/JKWRA.2007.40.4.299
  7. Emanuel, K., Sundararajan, R., and Williams, J. (2008). "Hurricanes and global warming-Results from Downscling IPCC AR4 Simulations."American Meteorological Society, pp. 347-367.
  8. Huang, R.H., and Li, W.J. (1987). "Influence of the heat source anomaly over the western tropical Pacific on the subtropical high over East Asia." Paper presented at International Conference on the General Circulation of East Asia, ICGCEA, Chengdu, China.
  9. JMA (Japan Meteorological Agency) (2012). www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html, accessed 10 February 2012.
  10. Kawamura, R., and Ogasawara, T. (2006). "On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer." SOLA, 2, 37-40, DOI:10.2151/sola.2006-010.
  11. Kawamura, R., Murakami, T., and Wang, B. (1996). "Tropical and midlatitude 45day perturbations over the western Pacific during the northern summer." J. Meteorol. Soc. Jpn., Vol. 74, pp. 867-890. https://doi.org/10.2151/jmsj1965.74.6_867
  12. Kawamura, R., Sugi, M., Kayahara, T., and Sato, N. (1998). "Recent extraordinary cool and hot summers in East Asia simulated by an ensem-ble climate experiment." J. Meteorol. Soc. Jpn., Vol. 76, pp. 597-617. https://doi.org/10.2151/jmsj1965.76.4_597
  13. Kim, J.S, Jain, S., and Yoon, S.K. (2012). "Warm season streamflow variability in the Korean Han River Basin: links with atmospheric teleconnections." Int. J. Climatol., Vol. 32, No. 4, pp. 635-640. doi:10.1002/joc.2290.
  14. Kim, J.S., and Jain, S. (2011). "Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology for characterizing climate-related risk." Environ. Res. Lett. 6, 034033, DOI:10.1088/1748-9326/6/3/034033.
  15. Kim, J.S., Jain, S., and Moon, Y.I. (2011). "Atmospheric teleconnection-based conditional streamflow distributions for the Han River and its sub-watersheds in Korea." Int. J. Climatol., doi:10.1002/joc.2374.
  16. Kim, Y.H., Kim, M.K., and Lee, W.S. (2008). "An Investigation of Large-Scale Climate Indices with the influence on Temperature and Precipitation Variation in Korea." Atmosphere Korean Meteorological Society, KMS, Vol. 18, No. 2. pp. 83-95.
  17. Kistler, R., and Coauthors. (2001). "The NCEP-NCAR 50-year reanalysis: Monthly means CD- ROM and documentation Bull." Amer. Meteor. Soc., Vol. 82, pp. 247-267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  18. KMA(Korea Meteorological Administration) (1996). Typhoon White Book (in Korean).
  19. Knuston, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J.P., Srivastava, A.K., and Sugi, M. (2010). "Tropical cyclones and climate change." Nature Geoscience, Vol. 3, pp. 157-163. https://doi.org/10.1038/ngeo779
  20. Kosaka, Y., and Nakamura, H. (2006). "Structure and dynamics of the sum-mertime Pacific-Japan teleconnection pattern." Q. J. R. Meteorol. Soc., 132, 2009- 2030, DOI:10.1256/qj.05.204.
  21. Kosaka, Y., and Nakamura, H. (2010). "Mechanisms of Meridional Teleconnection Observation between a Summer Monsoon Systemand a Subtropical Anticyclone. Part I: The Pacific-Japan Pattern." Journal of Climate, Vol. 23, pp. 5085-5108. https://doi.org/10.1175/2010JCLI3413.1
  22. Kwon, H.H., and Lee, J.J. (2011). "Seasonal rainfall outlook of Nakdong River Basin using nonstationary frequency analysis model and climate information." Journal of Korea Water Resources Association, KWAR, Vol. 44, No. 5, pp. 339-250. https://doi.org/10.3741/JKWRA.2011.44.5.339
  23. Kwon, H.H., and Moon, Y.L. (2005). "Independent component analysis of Nino3.4 sea surface temperature and summer seasonal rainfall." Journal of Korea Water Resources Association, KWAR, Vol. 38, No. 12, pp. 985-994. https://doi.org/10.3741/JKWRA.2005.38.12.985
  24. Li, Y.S., and Chan, J.C.L. (1999). "Momentum Transports Associated with Tropical Cyclone Recurvature."Mon. Wea. Rev., Vol. 127, pp. 1021-1037. https://doi.org/10.1175/1520-0493(1999)127<1021:MTAWTC>2.0.CO;2
  25. Liu, K.S., and Chan, J.C.L. (2008). "Interdecadal variability of western North Pacific tropical cyclone tracks." Journal of Climate, Vol. 21, pp. 4464-4476. https://doi.org/10.1175/2008JCLI2207.1
  26. Moon, Y.I., and Lall, U. (1994). "Kernel quantile function estimator for flood frequency analysis." Water Resources Research, Vol. 30, No. 11, pp. 2095-3103. https://doi.org/10.1029/94WR01217
  27. Nitta, T. (1987). "Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation." J. Meteorol. Soc. Jpn., Vol. 65, pp. 373-390.
  28. Nitta, T., and Hu, Z.Z. (1996). "Summer Climate Variability in China and Its Associated with 500 hPa Height and Tropical Convection." J. Meteorol. Soc. Jpn., Vol. 4, pp. 425-445.
  29. Shin, H.S., Ahn, J.H., and Yoon, Y.N. (1999). "Analysis of spatial-temporal relationship between El Nino and South Korean precipitation." Journal of Korean Society of Civil Engineers, KSCE, Vol. 19, No. II-1, pp. 1-12.
  30. TRC (Typhoon Research Center). (2012). http://www.typhoon.or.kr/accessed 10 February 2012.
  31. Tsuyuki, T., and Kurihara, K. (1989). "Impact of convective activity in the western tropical Pacific on the East Asian summer circulation." J. Meteorol. Soc. Jpn., Vol. 67, pp. 231-247. https://doi.org/10.2151/jmsj1965.67.2_231
  32. Wakabayashi, S., and Kawamura, R. (2004). "Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan." J. Meteorol. Soc. Jpn., Vol. 82, pp. 1577-1588. DOI:10.2151/jmsj.82.1577.
  33. WAMIS(Water management information system). (2012). http://wamis.go.kr/eng/accessed 10 February 2012.
  34. Yamada, K., and Kawamura, R. (2007). "Dynamical link between typhoon activity and the PJ teleconnection pattern from early summer to autumn as revealed by the JRA-25 Reanalysis." SOLA, Vol. 3, pp. 65-68. DOI:10.2151/sola.2007-017.
  35. Yuan, Y., Yang, H., Zhou, W., and Li, C. (2008). "Influences of the Indian Ocean Dipole on the Asian summer monsoon in the following year." Int. J. Climatol., Vol. 28, pp. 1849-1859. DOI: 10.1002/JOC.167.