DOI QR코드

DOI QR Code

Application of a Penalty Function to Improve Performance of an Automatic Calibration for a Watershed Runoff Event Simulation Model

홍수유출 모형 자동 보정의 벌칙함수를 이용한 기능 향상 연구

  • Kang, Taeuk (Dept. of Civil Engrg., Pukyong National Univ.) ;
  • Lee, Sangho (Dept. of Civil Engrg., Pukyong National Univ.)
  • 강태욱 (부경대학교 대학원 토목공학과) ;
  • 이상호 (부경대학교 공과대학 토목공학과)
  • Received : 2012.06.11
  • Accepted : 2012.08.13
  • Published : 2012.12.31

Abstract

Evolutionary algorithms, which are frequently used in an automatic calibration of watershed runoff simulation models, are unconstrained optimization algorithms. An additional method is required to impose constraints on those algorithms. The purpose of the study is to modify the SCE-UA (shuffled complex evolution-University of Arizona) to impose constraints by a penalty function and to improve performance of the automatic calibration module of the SWMM (storm water management model) linked with the SCE-UA. As indicators related to peak flow are important in watershed runoff event simulation, error of peak flow and error of peak flow occurrence time are selected to set up constraints. The automatic calibration module including the constraints was applied to the Milyang Dam Basin and the Guro 1 Pumping Station Basin. The automatic calibration results were compared with the results calibrated by an automatic calibration without the constraints. Error of peak flow and error of peak flow occurrence time were greatly improved and the original objective function value is not highly violated in the automatic calibration including the constraints. The automatic calibration model with constraints was also verified, and the results was excellent. In conclusion, the performance of the automatic calibration module for watershed runoff event simulation was improved by application of the penalty function to impose constraints.

유역유출 모의 모형의 자동 보정에 주로 사용되는 진화계열의 알고리즘은 무제약 최적화 알고리즘이다. 이러한 진화계열 알고리즘에 제약조건을 반영하기 위해서는 제약조건을 다룰 수 있는 별도의 방법이 요구된다. 본 연구의 목적은 진화계열 알고리즘의 일종인 집합체 혼합진화 알고리즘에 벌칙함수를 적용하여 제약조건을 고려할 수 있도록 하는 것이다. 또한, 제약조건을 고려할 수 있는 집합체 혼합진화 알고리즘을 SWMM의 자동 보정 모듈에 적용하여 기존 자동 보정 모듈의 기능을 개선하는 것이다. 홍수유출 해석에서는 첨두유량과 관련된 지표가 중요하므로 첨두유량의 오차와 첨두유량 발생시간의 오차를 제어할 수 있는 제약조건을 구성하였다. 제약조건을 포함하여 구성된 자동 보정 모듈은 밀양댐 유역과 구로1 빗물펌프장 배수유역의 홍수유출 모의 모형에 대하여 적용되었다. 자동 보정의 결과는 제약조건의 포함 유무에 따른 결과를 비교하여제시되었다. 그 결과, 제약조건을 고려함에 따라 본래의 목적함수를 크게 위배하지 않으면서, 첨두유량과 첨두유량 발생시간의 오차가 크게 개선되었다. 또한, 검증을 통해서도 제약최적화를 통한 자동보정의 적절성이 검토되었다. 결론적으로 벌칙함수를 이용한 제약조건의 반영을 통해 자동 보정 모듈의 기능을 향상시킬 수 있었다.

Keywords

References

  1. Bae, D.H., and Cho, W.C. (1995). "Runoff analysis on the physically-based conceptual time-continuous runoff model." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 28, No. 6, pp. 193-202.
  2. Barco, J., Wong, K.M., and Stenstrom, M.K. (2008). "Automatic calibration of the U.S. EPA SWMM model for a large urban catchment." Journal of Hydraulic Engineering, Vol. 134, No. 4, pp. 466-474. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:4(466)
  3. Chae, J. (2004). Study of runoff management scheme in urbanization area using XP-SWMM. M.Sc. thesis, Paichai University, Daejeon, Korea.
  4. Cho, J., and Lee, J. (2006). "Parameter optimization for runoff calibration of SWMM." Journal of Environmental Impact Assessment, Korean Society Environmental Impact Assessment, Vol. 15, No. 6, pp. 435-441.
  5. Cho, M.O., Yoon, J.Y., Jang, S.H., and Yoon, Y.N. (2007). "An analysis of flood runoff variations due to watershed development using SWMM." Journal of the Korean Society of Civil Engineers, Korean Society of Civil Engineers, Vol. 27, No. 2B, pp. 125-132.
  6. Duan, Q. (1991). A global optimization strategy for efficient and effective calibration of hydrologic models. Ph.D. dissertation, University of Arizona, Tucson, Arizona, USA.
  7. Duan, Q., Gupta, V., and Sorooshian, S. (1994). "Optimal use of the SCE-UA global optimization method for calibrating watershed models." Journal of Hydrology, Vol. 158, pp. 265-284. https://doi.org/10.1016/0022-1694(94)90057-4
  8. Duan, Q., Sorooshian, S., and Gupta, V. (1992). "Effective and efficient global optimization for conceptual rainfallrunoff models." Water Resources Research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  9. Huber, W.C., and Dickinson, R.E. (1992). Storm Water Management Model, Version 4: User's Manual. EPA/600/3-88/001a, U.S. Environmental Protection Agency, Athens, Georgia.
  10. James, W., Huber, W.C., Dickinson, R.E., Pitt, R.E., James, W.R.C., Roesner, L.A., and Aldrich, J.A. (2005). User's guide to SWMM. CHI, Ontario, Canada.
  11. Javaheri, H. (1998). Automatic calibration of urban run-off models using global optimization techniques. M.Sc. thesis, McGill University, Montreal, Canada.
  12. Kang, M.G., Park, S.W., Im, S.J., and Kim, H.J. (2002). "Parameter calibration of a daily rainfall-runoff model using global optimization methods." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 35, No. 5, pp. 541-552. https://doi.org/10.3741/JKWRA.2002.35.5.541
  13. Kang, S., Lee, D., and Lee, S. (2004). "A study on calibration of Tank model with soil moisture structure." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 37, No. 2, pp. 133-144. https://doi.org/10.3741/JKWRA.2004.37.2.133
  14. Kang, T., Lee, S., Kang, S., and Park, J. (2012). "A study for an automatic calibration of urban runoff model by the SCE-UA." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 45, No. 1, pp. 15-27. https://doi.org/10.3741/JKWRA.2012.45.1.15
  15. Koo, B. (2006). Global optimization of Tank model parameters using multi-objective genetic algorithm. M.Sc. thesis, Sejong University, Seoul, Korea.
  16. Lee, K.S., Kim, S.U., and Hong, I.P. (2005). "Automatic calibration of rainfall-runoff model using multiobjective function." Journal of Korea Water Resources Association, Korea Water Resources Association, Vol. 38, No. 10, pp. 861-869. https://doi.org/10.3741/JKWRA.2005.38.10.861
  17. Madsen, H. (2000). "Automatic calibration of a conceptual rainfall-runoff model using multiple objectives." Journal of Hydrology, Vol. 235, pp. 276-288. https://doi.org/10.1016/S0022-1694(00)00279-1
  18. Mallipeddi, R., and Suganthan, P.N. (2010). "Ensemble of constraint handling techniques." IEEE Transactions on Evolutionary Computation, Vol. 14, No. 4, pp. 561-579. https://doi.org/10.1109/TEVC.2009.2033582
  19. Rao, S.S. (1996). Engineering Optimization Theory and Practice. John Wiley & Sons, N.Y., p. 488.
  20. Rossman, L.A. (2009). Storm Water Management Model User's Manual Version 5.0. EPA/600/R-05/040, National Risk Management Research Laboratory, Environmental Protection Agency, Cincinnati, Ohio.
  21. Tessema, B., and Yen, G.G. (2009). "An adaptive penalty formulation for constrained evolutionary optimization." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 39, No. 3, pp. 565-578. https://doi.org/10.1109/TSMCA.2009.2013333
  22. Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W., and Sorooshian, S. (2003). "Effective and efficient algorithm for multiobjective optimization of hydrologic models." Water Resources Research, Vol. 39, No. 8, p. 1214. https://doi.org/10.1029/2002WR001746
  23. Yapo, P.O., Gupta, H.V., and Sorooshian, S. (1998). "Multiobjective global optimization for hydrologic models." Journal of Hydrology, Vol. 204, No. 1-4, pp. 83-97. https://doi.org/10.1016/S0022-1694(97)00107-8
  24. Yeniay, O. (2005). "Penalty function methods for constrained optimization with genetic algorithms."Mathematical and Computational Applications, Vol. 10, No. 1, pp. 45-56.