DOI QR코드

DOI QR Code

The Effectiveness of the Use of Custom-Made Foot Orthotics on Temporal-Spatial Gait Parameters in Children With Spastic Cerebral Palsy

  • Kim, Sung-Gyung (Dept. of Physical Therapy, General Graduate School, Catholic University of Daegu) ;
  • Ryu, Young-Uk (Dept. of Physical Therapy, Catholic University of Daegu)
  • Received : 2012.09.03
  • Accepted : 2012.10.22
  • Published : 2012.11.19

Abstract

This study examined the effects of custom-made foot orthotics on the temporal-spatial gait parameters in children with cerebral palsy. Twenty spastic bilateral cerebral palsy (spastic CP) children (11 boys and 9 girls) participated in this study. GAITRite was used to examine the velocity, cadence, step length differential, step length, stride length, stance time, single support time, double support time, base of support, and toe angle while walking with and without foot orthotics. The differences in temporal-spatial parameters were analyzed using paired t-test. The significance level was set at .05. The velocity, cadence, both step lengths, both stride lengths, both bases of support and right toe angle significantly increased when the children with spastic CP with foot orthotics compared to without foot orthotics (p<.05). The step length differential between the two extremities, left stance time and left single support time, significantly decreased with foot orthotics (p<.05). Right stance time, right single support time, both double support times and left toe angle showed little change (p>.05). This study demonstrated that foot orthotics were beneficial for children with spastic CP as a gait assistance tool.

Keywords

References

  1. Abel MF, Juhl GA, Vaughan CL, et al. Gait assessment of fixed ankle-foot orthoses in children with spastic diplegia. Arch Phys Med Rehabil. 1998;79(2):126-133. https://doi.org/10.1016/S0003-9993(98)90288-X
  2. Blanc Y, Balmer C, Landis T, et al. Temporal parameters and patterns of the foot roll over during walking: Normative data for healthy adults. Gait Posture. 1999;10(2):97-108. https://doi.org/10.1016/S0966-6362(99)00019-3
  3. Bowden MG, Balasubramanian CK, Behrman AL, et al. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil Neural Repair. 2008;22(6):672-675. https://doi.org/10.1177/1545968308318837
  4. Buckon CE, Thomas SS, Jakobson-Huston S, et al. Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev Med Child Neurol. 2004;46(9):590-598.
  5. Cherng RJ, Liu CF, Lau TW, et al. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil. 2007;86(7):548-555. https://doi.org/10.1097/PHM.0b013e31806dc302
  6. Coughlin MJ. Roger A. Mann award. Juvenile hallux valgus: Etiology and treatment. Foot Ankle Int. 1995;16(11):682-697. https://doi.org/10.1177/107110079501601104
  7. Dewar ME, Judge G. Temporal asymmetry as a gait quality indicator. Med Biol Eng Comput. 1980;18(5):689-693. https://doi.org/10.1007/BF02443147
  8. Eisenhardt JR, Cook D, Pregler I, et al. Changes in temporal gait characteristics and pressure distribution for bare feet versus various heel heights. Gait Posture. 1996;4(4):280-286. https://doi.org/10.1016/0966-6362(95)01053-X
  9. Flett PJ. Rehabilitation of spasticity and related problems in childhood cerebral palsy. J Paediatr Child Health. 2003;39(1):6-14. https://doi.org/10.1046/j.1440-1754.2003.00082.x
  10. Fosang AL, Galea MP, McCoy AT, et al. Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol. 2003;45(10):664-670.
  11. Gage JR, Russman BS. Gait Analysis in Cerebral Palsy. Cambridge University Press, 1991:101-117.
  12. Gage JR. The Treatment of Gait Problems in Cerebral Palsy: Mac Keith Press, 2004:382-397.
  13. Gage JR, Schwartz MH, Koop SE, et al. The Identification and Treatment of Gait Problems in Cerebral Palsy. Mac Keith Press, 2009:327-348.
  14. Grieve DW, Gear RJ. The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. Ergonomics. 1966;9(5):379-399. https://doi.org/10.1080/00140136608964399
  15. Goldie PA, Matyas TA, Evans OM. Deficit and change in gait velocity during rehabilitation after stroke. Arch Phys Med Rehabil. 1996;77:1074-1082. https://doi.org/10.1016/S0003-9993(96)90072-6
  16. Hawke F, Burns J, Radford JA, et al. Custom-made foot orthoses for the treatment of foot pain. Cochrane Database Syst Rev. 2008;16(3): CD006801.
  17. Himmelmann K, Hagberg G, Beckung E, et al. The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth year period 1995-1998. Acta Paediatr. 2005;94(3):287-294. https://doi.org/10.1111/j.1651-2227.2005.tb03071.x
  18. Inan M, Altintas F, Duru I. The evaluation and management of rotational deformity in cerebral palsy. Acta Orthop Traumatol Turc. 2009;43(2): 106-112. https://doi.org/10.3944/AOTT.2009.106
  19. Kakihana W, Akai M, Nakazawa K, et al. Effects of laterally wedged insoles on knee and subtalar joint moments. Arch Phys Med Rehabil. 2005;86(7):1465-1471. https://doi.org/10.1016/j.apmr.2004.09.033
  20. Kirtley C, Whittle MW, Jefferson RJ. Influence of walking speed on gait parameters. J Biomed Eng. 1985;7(4):282-288. https://doi.org/10.1016/0141-5425(85)90055-X
  21. Kirtley C. Clinical Gait Analysis: Theory and Practice. Churchill Livingstone, 2006:15-37.
  22. Krebs DE, Goldvasser D, Lockert JD, et al. Is base of support greater in unsteady gait? Phys Ther. 2002;82(2):138-147.
  23. Kressig RW, Gregor RJ, Oliver A, et al. Temporal and spatial features of gait in older adults transitioning to frailty. Gait Posture. 2004;20(1):30-35. https://doi.org/10.1016/S0966-6362(03)00089-4
  24. Landorf KB, Keenan AM. Efficacy of foot orthoses. What does the literature tell us? J Am Podiatr Med Assoc. 2000;90(3):149-158. https://doi.org/10.7547/87507315-90-3-149
  25. Morris C. A review of the efficacy of lower‐limb orthoses used for cerebral palsy. Dev Med Child Neurol. 2002;44(3):205-211. https://doi.org/10.1017/S0012162201001943
  26. Nakajima K, Kakihana W, Nakagawa T, et al. Addition of an arch support improves the biomechanical effect of a laterally wedged insole. Gait Posture. 2009;29(2):208-213. https://doi.org/10.1016/j.gaitpost.2008.08.007
  27. Pirpiris M, Trivett A, Baker R, et al. Femoral derotation osteotomy in spastic diplegia. Proximal or distal? J Bone Joint Surg Br. 2003;85(2):265-272. https://doi.org/10.1302/0301-620X.85B2.13342
  28. Radtka SA, Skinner SR, Dixon DM, et al. A comparison of gait with solid, dynamic, and no ankle- foot orthoses in children with spastic cerebral palsy. Phys Ther. 1997;77(4):395-409.
  29. Rosenbaum P, Paneth N, Leviton A, et al. A report: The definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.
  30. Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: Creation of motor development curves. JAMA. 2002;288(11):1357-1363. https://doi.org/10.1001/jama.288.11.1357
  31. Sekiya N, Nagasaki H. Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio (step-length/step-rate). Gait Posture. 1998;7(3):225-227. https://doi.org/10.1016/S0966-6362(98)00009-5
  32. Ubhi T, Bhakta BB, Ives HL, et al. Randomised double blind placebo controlled trial of the effect of botulinum toxin on walking in cerebral palsy. Arch Dis Child. 2000;83(6):481-487. https://doi.org/10.1136/adc.83.6.481
  33. Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture. 1999;9(3):207-231. https://doi.org/10.1016/S0966-6362(99)00009-0
  34. WeeFIM System clinical guide: Version 5.01. Buffalo, NY: Uniform Data System for Medical Rehabilitation. 1998.
  35. Wu KK. Foot Orthoses: Principles and clinical applications. Williams & Wilkins, 1990:353-357.