DOI QR코드

DOI QR Code

A Case Study in the Mars Landing Site Selection for Science Objects

  • Seo, Haingja (Aerospace Convergence Technology Research Laboratory, Korea Aerospace Research Institute) ;
  • Kim, Eojin (Aerospace Convergence Technology Research Laboratory, Korea Aerospace Research Institute) ;
  • Kim, Joo Hyeon (Aerospace Convergence Technology Research Laboratory, Korea Aerospace Research Institute) ;
  • Lee, Joo Hee (Aerospace Convergence Technology Research Laboratory, Korea Aerospace Research Institute) ;
  • Choi, Gi-Hyuk (Aerospace Convergence Technology Research Laboratory, Korea Aerospace Research Institute) ;
  • Sim, Eun-Sup (Aerospace Convergence Technology Research Laboratory, Korea Aerospace Research Institute)
  • Received : 2012.11.10
  • Accepted : 2012.11.21
  • Published : 2012.12.15

Abstract

It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

Keywords

References

  1. Arvidson R, Adams D, Bonfiglio G, Christensen P, Cull S, et al., Mars Exploration Program 2007 Phoenix landing site selection and characteristics, JGR, 113, E00A03 (2008). http://dx.doi.org/10.1029/2007JE003021
  2. Christensen PR, Wyatt MB, Glotch TD, Rogers AD, Anwar S, et al., Mineral composition and abundance of the rocks and soils at Gusev and Meridiani from the Mars Exploration Rover MINI-TES instruments, in 36th Annual Lunar and Planetary Science Conference, League, TX, 14-18 Mar 2005.
  3. Connerney JEP, Acuna MH, Ness NF, Kletetschka G, Mitchell DL, et al., Tectonic implications of Mars crustal magnetism, PNAS, 102, 14970-14975 (2005). http://dx.doi.org/10.1073/pnas.0507469102
  4. Edberg SJ, Exploration and study a martian lava tube or cave, in Concepts and Approaches for Mars Exploration, Houston, TX, 12-14 Jun 2012.
  5. Fergason RLF, Christensen PR, Thermophysics at the mer spirit and opportunity landing sites: perspectives from the surface and from the surface and from orbit, in 36th Lunar and Planetary Science Conference, League, TX, 14-18 Mar 2005.
  6. Geminale A, Formisano V, Giuranna M, Methane in Martian atmosphere: average spatial, diurnal, and seasonal behavior, P&SS, 56, 1195-1203 (2008). http://dx.doi.org/10.1016/j.pss.2008.03.004
  7. Greeley R, Mars landing site catalog, NASA reference publication, Vol. 1238 (National Aeronautics and Space Administration, Washington, DC, 1990).
  8. Hand E, Mars scientists propose landing sites for future rovers, Nat News (2012). http://dx.doi.org/10.1038/nature.2012.10150
  9. Hartogh P, Błęcka MI, Jarchow C, Sagawa H, Lellouch E, et al., First results on Martian carbon monoxide from Herschel/HIFI observations, A&A, 521, L48 (2010a). http://dx.doi.org/10.1051/0004-6361/201015159
  10. Hartogh P, Jarchow C, Lellouch E, de Val-Borro M, Rengel M, et al., Herschel/HIFI observations of Mars: first detection of $O_2$ at submillimetre wavelengths and upper limits on HCH and $H_2O_2$, A&A, 521, L49 (2010b). http://dx.doi.org/10.1051/0004-6361/201015160
  11. Hviid SF, Madsen MB, Gunnlaugsson HP, Goetz W, Knudsen JM, et al., Magnetic properties experiments on the Mars Pathfinder lander: preliminary results, Sci, 278, 1768-1770 (1997). http://dx.doi.org/10.1126/science.278.5344.1768
  12. Kawaguch C, Suzuki A, Kurita K, Splashing on Mars, in the 3rd European Planetary Science Congress, Munster, Germany, 21-26 Sep 2008.
  13. Lee CB, The nature of the fracture patterns observed at Mawrth vallis, Mars, J Korea Geomorphol Assoc, 19, 145-159 (2012).
  14. Le Deit L, Hauber E, Fueten F, Pondrelli M, Rossi A, et al., Geological study of Gale Crater on Mars, in AGU Fall Meeting, San Francisco, CA, 5-9 Dec 2011.
  15. Morrison D, Owen TC, The planetary system (Addison-Wesley, Reading, 1988), 307-308.
  16. Smith PH, Bell JF III, Bridges NT, Britt DT, Gaddis L, et al., Results from the Mars Pathfinder camera, Sci, 278, 1758-1765 (1997). http://dx.doi.org/10.1126/science.278.5344.1758
  17. Smith PH, Tamppari L, Arvidson RE, Bass D, Blaney D, et al., Introduction to special section on the Phoenix Mission: landing site characterization experiments, mission overviews, and expected science, JGR, 113, E00A18 (2008). http://dx.doi.org/10.1029/2008je003083
  18. Soffen GA, Scientific results of the Viking missions, Sci, 194, 1274-1276 (1976). http://dx.doi.org/10.1126/science.194.4271.1274
  19. Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, et al., New perspectives on ancient Mars, Sci, 307, 1214-1220 (2005). http://dx.doi.org/10.1126/science.1101812
  20. Swinyard BM, Hartogh P, Sidher S, Fulton T, Lellouch E, et al., The Herschel-SPIRE submillimetre spectrum of Mars, A&A, 518, L151 (2010). http://dx.doi.org/10.1051/0004-6361/201014717
  21. Wolpert S, UCLA scientist discovers plate tectonics on Mars, UCLA Newsroom (9 Aug 2012).