DOI QR코드

DOI QR Code

Prediction of Longitudinal and Directional Stability Derivatives for the SDM using Forced Harmonic Oscillation

강제조화운동을 이용한 SDM의 세로 및 방향 안정성 미계수 예측

  • 이형로 (인하대학교 대학원 항공우주공학과) ;
  • 이승수 (인하대학교 항공.조선.산업공학부) ;
  • 조창열 (울산대학교 기계공학부 항공우주공학전공)
  • Received : 2012.08.28
  • Accepted : 2012.10.31
  • Published : 2012.11.01

Abstract

This paper presents the computations of the longitudinal and directional stability derivatives for the SDM(Standard Dynamic Model). The static and dynamic derivatives are evaluated at once using forced harmonic oscillations in the pitch and yaw directions. For the numerical simulations, a 3-D Euler solver that uses a dual time stepping method for unsteady time accurate simulations is applied. This work investigates the variation of the derivatives in terms of the Mach number and the several motion parameters. Good agreement of the pitch and yaw stability derivatives with previously published numerical results and experimental results are observed.

본 논문에서는 SDM 형상의 세로와 방향의 안정성 미계수를 예측하였다. 피치와 요 방향에 대한 강제조화 진동운동을 이용하여 정적 및 동적 미계수를 한 번에 계산하였다. 계산은 비정상 해석을 위한 이중시간 적분법을 적용한 3차원 Euler 해석자를 사용하여 수행하였다. 본 연구에서는 마하수뿐만 아니라 다양한 운동 변수에 따른 미계수를 예측하였다. 예측된 결과는 이전에 발표된 수치적, 실험적 연구 결과들과 비교하여 검증하였다.

Keywords

References

  1. Bryan, G. H., "Stability in Aviation," MacMillan, London, 1911.
  2. Williams, J. E. and Vukelich, S. R., " USAF Stability and Control DATCOM," 1979.
  3. Nguyen, L, T., "Evaluation of Importance of Lateral Acceleration Derivatives in Extraction of Lateral-Directional Derivatives at High Angles of Attack," NASA TN D-7739, 1974.
  4. Shantz, I. and Graves, R. T., "Dynamic and Static Stability Measurements of the Basic Finner at Supersonic Speeds." NAVORD Report 4516, Sept, 1960.
  5. MacAllister, L. C., "The Aerodynamic Properties of a Simple Non-Rolling Finned Cone-Cylinder Configuration Between Mach number 1.0 and 2.5," BRL Report No. 934, 1955.
  6. Winchenbach, G. L., Uselton, B. L., and Chelekis, R. M., "Free-Flight and Wind-Tunnel Data for a Generic Fighter Configuration," Journal of Aircraft, Vol. 21, No. 1, 1984, pp. 5-13. https://doi.org/10.2514/3.48215
  7. Uselton, B. L., "A Description of the Standard Dynamic Model(SDM)," 56th Supersonic Tunnel Association Meeting.
  8. Alemdaroglu, N., Iyigun, I., Altun, M., Uysal, H., Quagliotti, F., and Guglieri, G., "Determination of Dynamic Stability Derivatives Using Forced Oscillation Technique," 40th Aerospace Science Meeting and Exhibition, AIAA-2002-0528, 2002.
  9. Guglieri, G., Quagliotti, F., Scarabelli, P., "Static and Oscillatory Experiments on the SDM at Politecnico di Torino," Nota Scientifica E Tecnica N. 74/93, Forced Oscillation Technique-Reference Documentation, Vol. 3, 1993.
  10. Davari, A. R., and Soltani, M. R., "Effects of Plunging Motion on Unsteady Aerodynamic Behavior of an Aircraft Model in Compressible Flow," Iranian Journal of Science and Technology, Transaction B Engineering, Vol. 31, No. B1, 2007, pp. 49-63.
  11. Park, S. H., Kim, Y., Kwon, J. H., "Prediction of Dynamic Damping Coefficients Using Unsteady Dual-Time Stepping Method," 40th AIAA Aerospace Sciences Meeting, Reno, NV, 2002.
  12. Murman, S. M., "A Reduced-Frequency Approach for Calculating Dynamic Derivatives," 43th AIAA Aerospace Science Meeting, Reno, NV, 2005.
  13. Ronch, A. D., Vallespin, D., Ghoreyshi, and Badcock, K. J., "Computation of Dynamic Derivatives Using CFD," 28th AIAA Applied Aerodynamics Conference, 2010.
  14. 이형로, 공효준, 김범수, 이승수, "전산유체 역학을 이용한 비행체의 피치와 롤 동안정 미계수 예측," 한국항공우주학회지, 제 40권, 제 5호, 2012, pp. 395-404.
  15. Huang, X. Z., "Wing and Fin Buffet on The Standard Dynamic Model," NATO RTO Report Number RTO-TR-26, 1981, pp. 361-381.
  16. Fred, B. C., "Sting Interference Effects on the Static Dynamic, and Base Pressure Measurements of the Standard Dynamics Model Aircraft at Mach Numbers 0.3 through 1.3," AEDC-TR-81-3, 1981.
  17. Merkle, C. L. and Athavale, M., "Time -Accurate Unsteady Incompressible Flow Algorithms Based on Artificial Compressibility," AIAA Paper 87-1137, Proceedings of AIAA 8th Computational Fluid Dynamics Conferenece, Honolulu, Hawaii, 1987.
  18. Newman, D. M., "Estimation of Dynamic Stability Derivatives of a Generic Aircraft," 17th Australasian Fluid Mechanical Conference, 2010.
  19. Wiess, J. M. and Smith, W. A., "Preconditioning Applied to Variable and Constant Density Flows," AIAA Journal, Vol. 32, No. 11, 1995, pp. 2050-2057.
  20. Roe, R. L., "Approximate Riemann Solvers, Parameter Vector and Difference Scheme," Journal. of Computational Physics, Vol. 43, No. 2, 1981, pp.357. https://doi.org/10.1016/0021-9991(81)90128-5
  21. Van Leer, B., "Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's Method," Journal of Computational Physics, Vol. 32, 1979, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  22. Beam, R. M. and Warming, R. F., "Implicit Numerical Methods for the Compressible Navier Stokes and Euler Equations," von Karman Institute for Fluid Dynamics Lecture Series, 1982-04, 1982.

Cited by

  1. Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method vol.43, pp.3, 2015, https://doi.org/10.5139/JKSAS.2015.43.3.232