고농도의 당에 노출된 RAW 264.7 세포에서 conjugated linoleic acid의 TNF-${\alpha}$ 생산과 NF-${\kappa}B$의 활성 효과

Effect of Conjugated Linoleic Acid on Nuclear Factor-${\kappa}B$ Activation and Tumor Necrosis Factor-${\alpha}$ Production in RAW 264.7 Cells Exposed to High Concentration of Glucose

  • Lee, Minji (Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University) ;
  • Kang, Byeong-Teck (Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University) ;
  • Kang, Ji-Houn (Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University) ;
  • Yang, Mhan-Pyo (Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University)
  • 심사 : 2012.10.11
  • 발행 : 2012.10.31

초록

고혈당으로 야기된 염증은 당뇨병에서 합병증을 일으키는 주된 요인이다. 최근 연구에 따르면 면역세포에서 TNF-${\alpha}$ 같은 염증성 cytokine의 과도한 생성은 인슐린 저항성을 야기시킨다고 한다. Conjugated linoleic acid (CLA)는 TNF-${\alpha}$ 생산에 관여하여 면역반응을 조절하는 것으로 알려져 있다. 본 연구는 고농도의 당으로 처리한 RAW 264.7 세포에서 TNF-${\alpha}$ 생산, NF-${\kappa}B$의 활성과 $I{\kappa}B-{\alpha}$ 분해에 대한 CLA 효과를 검토하였다. 고농도의 당에 노출된 RAW세포는 저농도의 당에 노출된 RAW 세포보다 NF-${\kappa}B$의 활성과 $I{\kappa}B-{\alpha}$ 분해가 증가되었으며 RAW 세포의 배양 상층액 중에 TNF-${\alpha}$ 생산을 증가시켰다. CLA와 고농도 또는 저농도의 당을 같이 처리한 군은 당만 단일 처리한 군보다 TNF-${\alpha}$ 생산, NF-${\kappa}B$의 활성 및 $I{\kappa}B-{\alpha}$ 분해가 증가되었다. 그리고 고농도의 당과 CLA를 처리한 군에서 저농도의 당과 CLA 처리군에 비해 NF-${\kappa}B$의 활성과 $I{\kappa}B-{\alpha}$ 분해가 증가되었으며 이와 더불어 TNF-${\alpha}$의 양이 증가되었다. 이상의 결과로부터, CLA는 고농도의 당에 노출된 RAW 세포에서 NF-${\kappa}B$의 활성을 높이고 TNF-${\alpha}$ 생산을 증가시키며 이는 고혈당으로 유발되는 염증반응을 촉진하는 인자로 작용할 수 있음을 시사하였다.

Diabetes-related complications in human and veterinary medicine have been shown to be associated with hyperglycemia-induced inflammation. It has been recently suggested that the onset of insulin resistance may be caused by over-production of inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$ from immune cells. Conjugated linoleic acid (CLA) regulates inflammatory response through modulation of TNF-${\alpha}$ expression. The objective of this study was to examine the effect of CLA on nuclear factor kappaB (NF-${\kappa}B$) p65 binding activity, inhibitory kappaB ($I{\kappa}B$)-${\alpha}$ expression, and TNF-${\alpha}$ production from high glucose-treated RAW 264.7 cells. CLA was added to RAW cells that had been previously cultured with low or high concentration of glucose. The levels of TNF-${\alpha}$ protein in the culture supernatant of RAW cells exposed to high concentrations of glucose were higher than those of cells exposed to low concentrations of glucose. The treatment with the high concentration of glucose in RAW cells increased levels of NF-${\kappa}B$ p65 binding activity and the decreased $I{\kappa}B-{\alpha}$ expression when compared with those of low glucose. The treatments in combination with CLA and glucose (low and high) glucose in RAW cells increased TNF-${\alpha}$ production when compared with that glucose alone. These treatments with CLA increased TNF-${\alpha}$ production in high glucose-treated RAW cells than those with low glucose. These treatments of CLA also showed higher NF-${\kappa}B$ p65 binding activity and lower $I{\kappa}B-{\alpha}$ expression in high glucose than those in low glucose condition. This suggests that CLA can increase NF-${\kappa}B$ p65 binding activity and TNF-${\alpha}$ production from high glucose-treated RAW 264.7 cells and is likely to promote hyperglycemia-induced inflammation.

키워드

참고문헌

  1. Baldwin AS Jr. The $NF-{\kappa}B$ and $I{\kappa}B$ proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  2. Bassaganya-Riera J, Hontecillas R. CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr 2006; 25: 454-465. https://doi.org/10.1016/j.clnu.2005.12.008
  3. Ceolotto G, Gallo A, Miola M, Sartori M, Trevisan R, Del Prato S, Semplicini A, Avogaro A. Protein kinase C activity is acutely regulated by plasma glucose concentration in human monocytes in vivo. Diabetes 1999; 48: 1316-1322. https://doi.org/10.2337/diabetes.48.6.1316
  4. Chung S, Brown JM, Provo JN, Hopkins R, McIntosh MK. Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem 2005; 280: 38445-38456. https://doi.org/10.1074/jbc.M508159200
  5. Churruca I, Fernandez-Quintela A, Portillo MP. Conjugated linoleic acid isomers: differences in metabolism and biological effects. Biofactors 2009; 35: 105-111. https://doi.org/10.1002/biof.13
  6. Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease. Am J Cardiol 2007; 99: 15B-26B.
  7. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 2008; 57: 3090-3098. https://doi.org/10.2337/db08-0564
  8. Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 2004; 110: 1564-1571. https://doi.org/10.1161/01.CIR.0000142055.53122.FA
  9. Guha M, Bai W, Nadler JL, Natarajan R. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stressdependent and -independent pathways. J Biol Chem 2000; 275: 17728-17739. https://doi.org/10.1074/jbc.275.23.17728
  10. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesitylinked insulin resistance. Science 1993; 259: 87-91. https://doi.org/10.1126/science.7678183
  11. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 1999; 103: 185-195. https://doi.org/10.1172/JCI3326
  12. Jain SK, Kannan K, Lim G, Matthews-Greer J, McVie R, Bocchini JA Jr. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 2003; 26: 2139-2143. https://doi.org/10.2337/diacare.26.7.2139
  13. Jaudszus A, Krokowski M, Mockel P, Darcan Y, Avagyan A, Matricardi P, Jahreis G, Hamelmann E. Cis-9, trans-11- conjugated linoleic acid inhibits allergic sensitization and airway inflammation via a PPARgamma-related mechanism in mice. J Nutr 2008; 138: 1336-1342. https://doi.org/10.1093/jn/138.7.1336
  14. Kennedy A, Overman A, Lapoint K, Hopkins R, West T, Chuang CC, Martinez K, Bell D, McIntosh M. Conjugated linoleic acid-mediated inflammation and insulin resistance in human adipocytes are attenuated by resveratrol. J Lipid Res 2009; 50: 225-232. https://doi.org/10.1194/jlr.M800258-JLR200
  15. Kim DI, Kim KH, Kang JH, Jung EM, Kim SS, Jeung EB, Yang MP. Trans-10, cis-12-Conjugated linoleic acid modulates NF-kappaB activation and $TNF-{\alpha}$ production in porcine peripheral blood mononuclear cells via a PPAR ${\gamma}$- dependent pathway. Br J Nutr 2011; 105: 1329-1336. https://doi.org/10.1017/S000711451000499X
  16. LaRosa PC, Miner J, Xia Y, Zhou Y, Kachman S, Fromm ME. Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis. Physiol Genomics 2006; 27: 282-294. https://doi.org/10.1152/physiolgenomics.00076.2006
  17. Lee KN, Kritchevsky D, Pariza MW. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 1994; 108: 19-25. https://doi.org/10.1016/0021-9150(94)90034-5
  18. Nagai K, Fukushima T, Oike H, Kobori M. High glucose increases the expression of proinflammatory cytokines and secretion of $TNF{\alpha}$ and ${\beta}$-hexosaminidase in human mast cells. Eur J Pharmacol 2012; 687: 39-45. https://doi.org/10.1016/j.ejphar.2012.04.038
  19. Nakamura YK, Omaye ST. Conjugated linoleic acid isomers' roles in the regulation of PPAR-gamma and NF-kappaB DNA binding and subsequent expression of antioxidant enzymes in human umbilical vein endothelial cells. Nutrition 2009; 25: 800-811. https://doi.org/10.1016/j.nut.2009.01.003
  20. Otto NM, Schindler R, Lun A, Boenisch O, Frei U, Oppert M. Hyperosmotic stress enhances cytokine production and decreases phagocytosis in vitro. Crit Care 2008; 12: R107. https://doi.org/10.1186/cc6989
  21. Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med 2000; 223: 8-13. https://doi.org/10.1046/j.1525-1373.2000.22302.x
  22. Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 2001; 40: 283-298. https://doi.org/10.1016/S0163-7827(01)00008-X
  23. Parodi PW. Cows' milk fat components as potential anticarcinogenic agents. J Nutr 1997; 127: 1055-1060.
  24. Pickup JC, Chusney GD, Thomas SM, Burt D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci 2000; 67: 291-300. https://doi.org/10.1016/S0024-3205(00)00622-6
  25. Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006; 22: 257-273. https://doi.org/10.1002/dmrr.625
  26. Quan Y, Jiang CT, Xue B, Zhu SG, Wang X. High glucose stimulates $TNF{\alpha}$ and MCP-1 expression in rat microglia via ROS and $NF-{\kappa}B$ pathways. Acta Pharmacol Sin 2011; 32: 188-193. https://doi.org/10.1038/aps.2010.174
  27. Renard C, Van Obberghen E. Role of diabetes in atherosclerotic pathogenesis. What have we learned from animal models? Diabetes Metab 2006; 32: 15-29. https://doi.org/10.1016/S1262-3636(07)70243-4
  28. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomerspecific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 2002; 25: 1516-1521. https://doi.org/10.2337/diacare.25.9.1516
  29. Riserus U, Basu S, Jovinge S, Fredrikson GN, Arnlov J, Vessby B. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated Creactive protein: a potential link to fatty acid-induced insulin resistance. Circulation 2002; 106: 1925-1929. https://doi.org/10.1161/01.CIR.0000033589.15413.48
  30. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341: 1127-1133. https://doi.org/10.1056/NEJM199910073411506
  31. Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine 2006; 29: 81-90. https://doi.org/10.1385/ENDO:29:1:81
  32. Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL. Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 2001; 50: 1149-1157. https://doi.org/10.2337/diabetes.50.5.1149
  33. Shanmugam N, Reddy MA, Guha M, Natarajan R. Highglucose- induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003; 52: 1256-1264. https://doi.org/10.2337/diabetes.52.5.1256
  34. Smedman A, Vessby B. Conjugated linoleic acid supplementation in humans--metabolic effects. Lipids 2001; 36: 773-781. https://doi.org/10.1007/s11745-001-0784-7
  35. Stachowska E, Baskiewicz-Masiuk M, Dziedziejko V, Adler G, Bober J, Machalinski B, Chlubek D. Conjugated linoleic acids can change phagocytosis of human monocytes/macrophages by reduction in Cox-2 expression. Lipids 2007; 42: 707-716. https://doi.org/10.1007/s11745-007-3072-2
  36. Tanaka H, Fujita N, Tsuruo T. 3-Phosphoinositide-dependent protein kinase-1-mediated IkappaB kinase beta (IkkB) phosphorylation activates NF-kappaB signaling. J Biol Chem 2005; 280: 40965-40973. https://doi.org/10.1074/jbc.M506235200
  37. Toma L, Stancu CS, Botez GM, Sima AV, Simionescu M. Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem Biophys Res Commun 2009; 390: 877-882. https://doi.org/10.1016/j.bbrc.2009.10.066
  38. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling EA, Wang L, Hao A. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 2012; 202: 58-68. https://doi.org/10.1016/j.neuroscience.2011.11.062
  39. Yamagishi S, Nakamura K, Matsui T, Takenaka K, Jinnouchi Y, Imaizumi T. Cardiovascular disease in diabetes. Mini Rev Med Chem 2006; 6: 313-318. https://doi.org/10.2174/138955706776073501
  40. Yamasaki M, Kishihara K, Mansho K, Ogino Y, Kasai M, Sugano M, Tachibana H, Yamada K. Dietary conjugated linoleic acid increases immunoglobulin productivity of Sprague-Dawley rat spleen lymphocytes. Biosci Biotechnol Biochem 2000; 64: 2159-2164. https://doi.org/10.1271/bbb.64.2159
  41. Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 1999; 48: 855-864. https://doi.org/10.2337/diabetes.48.4.855
  42. Yu Y, Correll PH, Vanden Heuvel JP. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 2002; 1581: 89-99. https://doi.org/10.1016/S1388-1981(02)00126-9
  43. Zhou YP, Grill VE. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994; 93: 870-876. https://doi.org/10.1172/JCI117042