DOI QR코드

DOI QR Code

소아 IgA 신병증 환자에서 미토콘드리아 DNA 돌연변이 분석

Mutational Analysis of Mitochondria DNA in Children with IgA Nephropathy

  • 엄태민 (인제대학교 의과대학 부산백병원 소아청소년과학교실) ;
  • 장창한 (인제대학교 의과대학 부산백병원 심혈관 대사질환 센터) ;
  • 김형규 (인제대학교 의과대학 부산백병원 심혈관 대사질환 센터) ;
  • 김나리 (인제대학교 의과대학 부산백병원 심혈관 대사질환 센터) ;
  • 정윤서 (레고켐 바이오사이언스) ;
  • 한진 (인제대학교 의과대학 부산백병원 심혈관 대사질환 센터) ;
  • 정우영 (인제대학교 의과대학 부산백병원 소아청소년과학교실)
  • Eom, Tae Min (Department of Pediatrics, Busan Paik Hospital, Inje University) ;
  • Jang, Chang-Han (Cardiovascular and Metabolic Disease Center, Busan Paik Hospital, Inje University) ;
  • Kim, Hyoung Kyu (Cardiovascular and Metabolic Disease Center, Busan Paik Hospital, Inje University) ;
  • Kim, Nari (Cardiovascular and Metabolic Disease Center, Busan Paik Hospital, Inje University) ;
  • Chung, Yun Seo (Legochem Bioscience) ;
  • Han, Jin (Cardiovascular and Metabolic Disease Center, Busan Paik Hospital, Inje University) ;
  • Chung, Woo Yeong (Department of Pediatrics, Busan Paik Hospital, Inje University)
  • 투고 : 2012.09.03
  • 심사 : 2012.09.19
  • 발행 : 2012.10.31

초록

목적: 일부 사구체 질환 그리고 말기 신부전 환자를 대상으로 한 연구들에서 특정 부위의 돌연변이와 deletion 그리고 미토콘드리아 DNA copy 수 등이 예후적인 경과와 관련이 있다는 주장이 제기되었다. 연구자들은 소아 IgA 신병증 환자를 대상으로 혈소판을 이용한 미토콘드리아 DNA 전체 염기서열 분석을 실시하였다. 방법: 인제의대 부산백병원 소아청소년과에서 신생검을 실시하여 IgA 신병증으로 확진된 7명의 환자를 대상으로 하였다. 대상 환아들은 동반된 전신질환이 없고 가족력상 신장질환이 없는 경우로 국한 하였다. 신생검 당시 혈청 크레아티닌 치와 사구체 여과율은 모두에서 정상 범위였으며, 각각의 연령 대에 정상 범위의 혈압을 보였다. 환자의 성별은 남자 4명 여자 3명 이었다. 환자들은 단백뇨의 정도에 따라 두 군으로 분류하였다. 결과: 신생검 당시 환자들의 평균 나이는 $11.5{\pm}2.2$세 였으며 최종 추적검사 당시의 나이는 평균 $17.9{\pm}3.2$세 였다. 환자들의 평균 추적관찰 기간은 평균 $7.8{\pm}3.1$년 이었다. 환자들은 입원당시 단백뇨의 정도에 따라 2군으로 분류하였다. 1군은 입원당시 단백뇨가 동반되지 않았던 환자들이며 2군은 신증후군의 임상 양상을 보인 환자들이었다. 최종 추적 관찰 당시 양군의 혈청 크레아티닌 치, BUN은 모두 정상 범위였다. 혈청 알부민 치는 2군에서 $3.7{\pm}0.6g/dL$로 1군의 $4.7{\pm}0.2g/dL$에 비해 유의하게 낮았으며(P=0.0241), 혈청 콜레스테롤치는 2군에서 $222.7{\pm}35.7mg/dL$로 1군의 $148.3{\pm}29.1mg$ 보다 유의하게 높았다(P=0.0283). 24시간 채집뇨상의 총단백량도 2군에서 $1,466.0{\pm}742.5\;gm$으로 1군의 $122.5{\pm}48.1\;gm$에 비해 유의하게 높았다(P=0.0135). 단회 소변을 이용한 단백/크레아티닌 비는 2군에서 $1.8{\pm}1.6$으로 1군의 $0.2{\pm}0.2$에 비해 높았으나(P=0.0961), 통계적인 유의성은 없었다. 2명의 환자에서 8,272-8,281(CCCCCTCTA) 부위 염기서열 누락을 관찰되었다. 단백뇨 정도에 따라 분류한 두군 모두에서 각각 한명씩 염기 서열의 누락이 있었다. 누락된 부위는 미토콘드리아 유래 발현되는 단백질 서열 등에 관련 없는 비부호화부위(non coding region) 이었다. 8,272-8,281 부위를 제외한 미토콘드리아 DNA 염기서열은 모두 정상이었다. 결론: 소아 IgA 신병증에서도 mtDNA common deletion이 증명됨으로해서 향후 소아 IgA 신병증에서 미토콘드리아의 기능 이상이 진행성 임상적 경과에 어떠한 영향을 미칠 수 있는 지에 대한 추가 연구가 필요하다고 생각한다.

Purpose: The association of mitochondrial DNA (mtDNA) mutations, deletions and copy number with progressive changes in patients with some glomerular disease and end-stage renal disease have been reported. In this study, we performed mtDNA mutation analysis in children with IgA nephropathy to investigate its role in progressive clinical course. Methods: Seven children with IgA nephropathy were involved in this study. MtDNA isolated from platelet was amplified by PCR and sequenced entirely. Results: The mean age at renal biopsy was $11.5{\pm}2.2$ year and the mean age at latest evaluation was $17.9{\pm}3.2$ year. The mean follow-up period were $7.8{\pm}3.1$ years. Patients was divided into 2 groups according to the amount of proteinuria at presenting manifestation. Group 2 patients were nephrotic syndrome. Renal function reveals within normal range in all patients. In group 2 patients, the mean serum albumin level was significantly lower than those of group 1 ($3.7{\pm}0.6g/dL$ vs. $4.7{\pm}0.2g/dL$, P=0.0241) and the mean total cholesterol level was significantly higher than those of group 1 ($222.7{\pm}35.7mg/dL$ vs. $148.3{\pm}29.1mg/dL$, P=0.0283). In Group 2 patients, total amount of protein of 24 hour collected urine also significantly higher than those of group 1 ($1,466.0{\pm}742.5mg$ vs. $122.5{\pm}48.1mg$, P=0.0135). Pr/Cr ratio in random urine sample was also higher in group 2 than those of group 1 but the statistical significance was not noted ($1.8{\pm}1.6$ vs. $0.2{\pm}0.2$, P=0.0961). Deletion of mtDNA nt 8272-8281 were observed in two patients, one patient in each groups, respectively. This is noncoding lesion. No patients demonstrated the mtDNA mutations. Conclusions: We have identified a deletion of mtDNA nt 8272-8281 in two children with IgA nephropathy. Further studies are needed to clarify the role of mitochondrial function in the progressive change of IgA nephropathy.

키워드

참고문헌

  1. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626-9. https://doi.org/10.1126/science.1099320
  2. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457-65. https://doi.org/10.1038/290457a0
  3. Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P, Sembonqi H et al. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 2007;7:311-21. https://doi.org/10.1016/j.mito.2007.06.004
  4. Rotig A. Renal disease and mitochondrial genetics. J Nephrol 2003;16:286-92.
  5. Yamagata K, Muro K, Usui J, Hagiwara M, Kai H, Arakawa Y, et al. Mitochondrial DNA mutations in focal segmental glomerulosclerosis lesions. J Am Soc Nephrol 2002;13:1816-23. https://doi.org/10.1097/01.ASN.0000019772.17954.F8
  6. Lim PS, Cheng YM, Wei YH. Large-scale mitochondrial DNA deletions in skeletal muscle of patients with end-stage renal disease. Free Radical Biology & Medicine 2000;29:454-63. https://doi.org/10.1016/S0891-5849(00)00334-8
  7. Rao M, Li L, Demello C, Guo D, Jaber BL, Pereira B et al. Mitochondrial DNA injury and mortality in hemodialysis patients. J Am Soc Nephrol 2009;20:189-96. https://doi.org/10.1681/ASN.2007091031
  8. Lee JE, Park HS, Ju YS, Kwak MH, Kin JI, Oh HY, et al. Higher mitochondrial DNA copy number is associated with lower prevalence of microalbuminuria. Exp Mol Med 2009;41:253-8. https://doi.org/10.3858/emm.2009.41.4.028
  9. Au KM, Lau SC, Mak YF, Lai WM, Chow TC, Chen ML, et al. Mitochondrial DNA deletion in a girl with Fanconi`s syndrome. Pediatr Nephrol 2007;22:136-40. https://doi.org/10.1007/s00467-006-0288-y
  10. D′Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 2004;24:179-96. https://doi.org/10.1016/j.semnephrol.2004.01.001
  11. Schena FP. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am J Med 1990;89: 209-15. https://doi.org/10.1016/0002-9343(90)90300-3
  12. Wyatt RJ, Kritchevsky SB, Woodford SY, Miller PM, Roy S III, Holland NH. IgA nephropathy: long-term prognosis for pediatric patients. J Peditr 1995;127:913-9. https://doi.org/10.1016/S0022-3476(95)70027-7
  13. Droz D, Kramar A, Nawar T, Noel LH. Primary IgA nephropathy: prognostic factors. Contrib Nephrol 1984;40:202-7.
  14. Remuzzi A, Perticucci E, Ruggenenti P, Mosconi L, Limona M, Remuzzi G. Angiotensin converting enzyme inhibition improves glomerular size-selectivity in IgA nephropathy. Kidney Int 1991;39:1267-73. https://doi.org/10.1038/ki.1991.160
  15. Scholte HR. The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 1988;20:161-91. https://doi.org/10.1007/BF00768393
  16. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999;283:1482-8. https://doi.org/10.1126/science.283.5407.1482
  17. Buemi M, Allegra A, Rotig A, Gubler MC, Aloisi C, Corica F et al. Renal failure from mitochondrial cytopathies. Nephron 1997;76:249-53. https://doi.org/10.1159/000190188
  18. Szabolcs MJ, Seigle R, Shanske S, Bonilla E, DiMauro S, D′ Agati V. Mitochondrial DNA deletion: a cause of chronic tubulointerstitial nephropathy. Kidney Int 1994;45:1388-96. https://doi.org/10.1038/ki.1994.181
  19. Rotig A, Goutieres F, Niaudet P, Rustin P, Chretien D, Guest G et al. Deletion of mitochondrial DNA in patient with chronic tubulointerstitial nephritis. J Pediatr 1995;126:597-601. https://doi.org/10.1016/S0022-3476(95)70359-4
  20. Tzen CY, Tsai JD, Wu TY, Chen BF, Chen ML, Lin SP, et al. Tubulointerstitial nephritis associated with a novel mitochondrial point mutation. Kidney International 2001;59:846-54. https://doi.org/10.1046/j.1523-1755.2001.059003846.x
  21. Simonetti S, Chen X, DiMauro S, Schon EA. Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1992; 1180:113-22. https://doi.org/10.1016/0925-4439(92)90059-V
  22. Lie VW, Zhang C, Nagley P. Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res 1998;26:1268-75. https://doi.org/10.1093/nar/26.5.1268
  23. Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci USA 1991;88: 10614-8. https://doi.org/10.1073/pnas.88.23.10614
  24. Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 2000;26:176-81. https://doi.org/10.1038/82826
  25. Feigenbaum A, Bai RK, Doherty E, Kwon H, Tan D, Sloane AQ et al. Novel mitochondrial DNA mutations associated with myopathy, cardiomyopathy, renal failure, and deafness. Am J Med Genet Part A 2006;140A:2216-22. https://doi.org/10.1002/ajmg.a.31436
  26. Gajewski CD, Lin MT, Cudkowicz ME, Beal MF, Manfredi G. Mitochondrial DNA from platelets of sporadic ALS patients restores normal respiratory functions in p0cells. Exp Neurol 2003;179:229-35. https://doi.org/10.1016/S0014-4886(02)00022-5
  27. Slee M, Finkemeyer J, Krupa M, Raghupathi R, Gardner J, Blumbergs P. A novel mitochondrial DNA deletion producing progressive external ophthalmoplegia associated with multiple sclerosis. J Clin Neurosci 2011;18:1318-24. https://doi.org/10.1016/j.jocn.2011.02.019
  28. Cavanagh EMV, Inserra F, Ferder M, Ferder L. From mitochondria to disesse: role of the renin-angiotensin system. Am J Nephrol 2007;27:545-53. https://doi.org/10.1159/000107757