DOI QR코드

DOI QR Code

A Fusion Tag to Fold on: The S-Layer Protein SgsE Confers Improved Folding Kinetics to Translationally Fused Enhanced Green Fluorescent Protein

  • Ristl, Robin (Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Kainz, Birgit (Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Stadlmayr, Gerhard (Department of Chemistry, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Schuster, Heinrich (Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Pum, Dietmar (Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Messner, Paul (Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Obinger, Christian (Department of Chemistry, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien) ;
  • Schaffer, Christina (Department of NanoBiotechnology, Vienna Institute of BioTechnology, Universitat fur Bodenkultur Wien)
  • Received : 2012.02.13
  • Accepted : 2012.04.28
  • Published : 2012.09.28

Abstract

Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

Keywords

References

  1. Butt, T. R., S. C. Edavettal, J. P. Hall, and M. R. Mattern. 2005. SUMO fusion technology for difficult-to-express proteins. Protein Expr. Purif. 43: 1-9. https://doi.org/10.1016/j.pep.2005.03.016
  2. Choi, S. I., K. Ryu, and B. L. Seong. 2009. RNA-mediated chaperone type for de novo protein folding. RNA Biol. 6: 21-24. https://doi.org/10.4161/rna.6.1.7441
  3. Cormack, B. P., R. H. Valdivia, and S. Falkow. 1996. FACSoptimized mutants of the green fluorescent protein (GFP). Gene 173: 33-38. https://doi.org/10.1016/0378-1119(95)00685-0
  4. Daley, D. O., M. Rapp, E. Granseth, K. Melen, D. Drew, and G. von Heijne. 2005. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308: 1321-1323. https://doi.org/10.1126/science.1109730
  5. Dietz, H. and M. Rief. 2004. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. USA 101: 16192-16197. https://doi.org/10.1073/pnas.0404549101
  6. Enoki, S., K. Saeki, K. Maki, and K. Kuwajima. 2004. Acid denaturation and refolding of green fluorescent protein. Biochemistry 43: 14238-14248. https://doi.org/10.1021/bi048733+
  7. Esposito, D. and D. K. Chatterjee. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17: 353-358. https://doi.org/10.1016/j.copbio.2006.06.003
  8. Feilmeier, B. J., G. Iseminger, D. Schroeder, H. Webber, and G. J. Phillips. 2000. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J. Bacteriol. 182: 4068-4076. https://doi.org/10.1128/JB.182.14.4068-4076.2000
  9. Fukuda, H., M. Arai, and K. Kuwajima. 2000. Folding of green fluorescent protein and the cycle3 mutant. Biochemistry 39: 12025-12032. https://doi.org/10.1021/bi000543l
  10. Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy server, pp. 571-607. In J. M. Walker (ed.). The Proteomics Protocols Handbook. Humana Press, New York.
  11. Heim, R., A. B. Cubitt, and R. Y. Tsien. 1995. Improved green fluorescence. Nature 373: 663-664.
  12. Huang, J. R., T. D. Craggs, J. Christodoulou, and S. E. Jackson. 2007. Stable intermediate states and high energy barriers in the unfolding of GFP. J. Mol. Biol. 370: 356-371. https://doi.org/10.1016/j.jmb.2007.04.039
  13. Ikura, K., T. Kokubu, S. Natsuka, A. Ichikawa, M. Adachi, K. Nishihara, H. Yanagi, and S. Utsumi. 2002. Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Prep. Biochem. Biotechnol. 32: 189-205. https://doi.org/10.1081/PB-120004130
  14. Ilk, N., E. M. Egelseer, and U. B. Sleytr. 2011. S-Layer fusion proteins - construction principles and applications. Curr. Opin. Biotechnol. 22: 824-831. https://doi.org/10.1016/j.copbio.2011.05.510
  15. Kainz, B., K. Steiner, M. Moller, D. Pum, C. Schaffer, U. B. Sleytr, and J. L. Toca-Herrera. 2010. Absorption, steady-state fluorescence, fluorescence lifetime, and 2D self-assembly properties of engineered fluorescent S-layer fusion proteins of Geobacillus stearothermophilus NRS 2004/3a. Biomacromolecules 11: 207-214. https://doi.org/10.1021/bm901071b
  16. Mickler, M., R. I. Dima, H. Dietz, C. Hyeon, D. Thirumalai, and M. Rief. 2007. Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations. Proc. Natl. Acad. Sci. USA 104: 20268-20273. https://doi.org/10.1073/pnas.0705458104
  17. Nagy, A., A. Malnasi-Csizmadia, B. Somogyi, and D. Lorinczy. 2004. Thermal stability of chemically denatured green fluorescent protein (GFP): A preliminary study. Thermochim. Acta 410: 161-163. https://doi.org/10.1016/S0040-6031(03)00397-6
  18. Nallamsetty, S. and D. S. Waugh. 2006. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr. Purif. 45: 175-182. https://doi.org/10.1016/j.pep.2005.06.012
  19. Novokhatny, V. and K. Ingham. 1997. Thermodynamics of maltose binding protein unfolding. Protein Sci. 6: 141-146.
  20. Perez-Jimenez, R., S. Garcia-Manyes, S. R. Ainavarapu, and J. M. Fernandez. 2006. Mechanical unfolding pathways of the enhanced yellow fluorescent protein revealed by single molecule force spectroscopy. J. Biol. Chem. 281: 40010-40014. https://doi.org/10.1074/jbc.M609890200
  21. Schaffer, C., R. Novotny, S. Kupcu, S. Zayni, A. Scheberl, J. Friedmann, et al. 2007. Novel biocatalysts based on S-layer self-assembly of Geobacillus stearothermophilus NRS 2004/3a: A nanobiotechnological approach. Small 3: 1549-1559. https://doi.org/10.1002/smll.200700200
  22. Scheyhing, C. H., F. Meersman, M. A. Ehrmann, K. Heremans, and R. F. Vogel. 2002. Temperature-pressure stability of green fluorescent protein: A Fourier transform infrared spectroscopy study. Biopolymers 65: 244-253. https://doi.org/10.1002/bip.10237
  23. Shimomura, O., F. H. Johnson, and Y. Saiga. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59: 223-239. https://doi.org/10.1002/jcp.1030590302
  24. Sleytr, U. B., P. Messner, D. Pum, and M. Sara. 1993. Crystalline bacterial cell surface layers. Mol. Microbiol. 10: 911-916. https://doi.org/10.1111/j.1365-2958.1993.tb00962.x
  25. Steiner, K., A. Hanreich, B. Kainz, P. G. Hitchen, A. Dell, P. Messner, and C. Schaffer. 2008. Recombinant glycans on an Slayer self-assembly protein: A new dimension for nanopatterned biomaterials. Small 4: 1728-1740. https://doi.org/10.1002/smll.200701215
  26. Thomas, J. D., R. A. Daniel, J. Errington, and C. Robinson. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol. Microbiol. 39: 47-53. https://doi.org/10.1046/j.1365-2958.2001.02253.x
  27. Tsien, R. Y. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67: 509-544. https://doi.org/10.1146/annurev.biochem.67.1.509
  28. Waldo, G. S., B. M. Standish, J. Berendzen, and T. C. Terwilliger. 1999. Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17: 691-695. https://doi.org/10.1038/10904
  29. Xie, J. B. and J. M. Zhou. 2008. Trigger factor assisted folding of green fluorescent protein. Biochemistry 47: 348-357. https://doi.org/10.1021/bi7011838
  30. Zarschler, K., B. Janesch, B. Kainz, R. Ristl, P. Messner, and C. Schaffer. 2010. Cell surface display of chimeric glycoproteins via the S-layer of Paenibacillus alvei. Carbohydr. Res. 345: 1422-1431. https://doi.org/10.1016/j.carres.2010.04.010

Cited by

  1. A Split-Luciferase Reporter Recognizing GFP and mCherry Tags to Facilitate Studies of Protein–Protein Interactions vol.18, pp.12, 2012, https://doi.org/10.3390/ijms18122681