DOI QR코드

DOI QR Code

Enhanced 2,3-Butanediol Production in Recombinant Klebsiella pneumoniae via Overexpression of Synthesis-Related Genes

  • Kim, Borim (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Soojin (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Joohong (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lu, Mingshou (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Oh, Minkyu (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Youngrok (Institute of Life Sciences and Resources, and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Lee, Jinwon (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2012.01.28
  • Accepted : 2012.05.03
  • Published : 2012.09.28

Abstract

2,3-Butanediol (2,3-BD) is a major metabolite produced by Klebsiella pneumoniae KCTC2242, which is a important chemical with wide applications. Three genes important for 2,3-BD biosynthesis acetolactate decarboxylase (budA), acetolactate synthase (budB), and alcohol dehydrogenase (budC) were identified in K. pneumoniae genomic DNA. With the goal of enhancing 2,3-BD production, these genes were cloned into pUC18K expression vectors containing the lacZ promoter and the kanamycin resistance gene to generate plasmids pSB1-7. The plasmids were then introduced into K. pneumoniae using electroporation. All strains were incubated in flask experiments and 2,3-BD production was increased by 60% in recombinant bacteria harboring pSB04 (budA and budB genes), compared with the parental strain K. pneumoniae KCTC2242. The maximum 2,3-BD production level achieved through fed-batch fermentation with K. pneumoniae SGJSB04 was 101.53 g/l over 40 h with a productivity of 2.54 g/l.h. These results suggest that overexpression of 2,3-BD synthesis-related genes can enhance 2,3-BD production in K. pneumoniae by fermentation.

Keywords

References

  1. Blomqvist, K., M. Nikkola, P. Lehtovaara, M. L. Suihko, U. Airaksinen, K. B. Straby, et al. 1993. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J. Bacteriol. 175: 1392-1404. https://doi.org/10.1128/jb.175.5.1392-1404.1993
  2. Garg, S. K. and A. Jain. 1995. Fermentative production of 2,3-butanediol. A review. Bioresour. Technol. 51: 103-109. https://doi.org/10.1016/0960-8524(94)00136-O
  3. Ji, X. J., H. Huang, S. Li, J. Du, and M. Lian. 2008. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol. Lett. 30: 731-734. https://doi.org/10.1007/s10529-007-9599-8
  4. Ji, X. J., H. Huang, and P. K. Ouyang. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 3: 351-364.
  5. Ji, X. J., H. Huang, J. G. Zhu, L. J. Ren, Z. K. Nie, J. Du, and S. Li. 2010. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751-1758. https://doi.org/10.1007/s00253-009-2222-2
  6. Ledingham, G. A. and A. C. Neish. 1954. Fermentative production of 2,3-butanediol, pp. 27-93. In L. A. Underkofler and R. J. Hickey (eds.). Industrial Fermentations. Chemical Publishing Co., New York, USA.
  7. Ma, C. Q., A. L. Wang, J. Y. Qin, L. X. Li, X. L. Ai, T. Y. Jiang, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82: 49-57. https://doi.org/10.1007/s00253-008-1732-7
  8. Mayer, D., V. Schlensog, and A. Bock. 1995. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J. Bacteriol. 177: 5261-5269. https://doi.org/10.1128/jb.177.18.5261-5269.1995
  9. Petrov, K. and P. Petrova. 2009. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 84: 659-665. https://doi.org/10.1007/s00253-009-2004-x
  10. Qin, J. Y., Z. J. Xiao, C. Q. Ma, N. Z. Xie, P. H. Liu, and P. Xu. 2006. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese J. Chem. Eng. 14: 132-136. https://doi.org/10.1016/S1004-9541(06)60050-5
  11. Syu, M. J. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 83: 358-363.
  12. Xiu, Z. L. and A. P. Zeng. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926. https://doi.org/10.1007/s00253-008-1387-4
  13. Yan, Y., C. C. Lee, and J. C. Liao. 2009. Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org. Biomoloc. Chem. 7: 3914-3917. https://doi.org/10.1039/b913501d
  14. Yu, E. K. C. and J. N. Saddler. 1983. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl. Environ. Microbiol. 46: 630-635.

Cited by

  1. Selective Production of 2,3-Butanediol and Acetoin by a Newly Isolated Bacterium Klebsiella oxytoca M1 vol.170, pp.8, 2012, https://doi.org/10.1007/s12010-013-0291-2
  2. Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1 vol.23, pp.4, 2013, https://doi.org/10.4014/jmb.1212.12021
  3. Recent Insights in the Removal of Klebseilla Pathogenicity Factors for the Industrial Production of 2,3-Butanediol vol.23, pp.7, 2012, https://doi.org/10.4014/jmb.1302.02066
  4. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30 vol.98, pp.3, 2012, https://doi.org/10.1007/s00253-013-4959-x
  5. The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis vol.37, pp.3, 2012, https://doi.org/10.1007/s00449-013-0999-y
  6. Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene vol.80, pp.19, 2012, https://doi.org/10.1128/aem.02069-14
  7. Redistribution of Carbon Flux toward 2,3-Butanediol Production in Klebsiella pneumoniae by Metabolic Engineering vol.9, pp.10, 2012, https://doi.org/10.1371/journal.pone.0105322
  8. Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae vol.99, pp.22, 2012, https://doi.org/10.1007/s00253-015-6861-1
  9. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1 vol.8, pp.None, 2015, https://doi.org/10.1186/s13068-015-0336-6
  10. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production vol.42, pp.5, 2012, https://doi.org/10.1007/s10295-015-1598-5
  11. Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid vol.99, pp.12, 2012, https://doi.org/10.1007/s00253-015-6442-3
  12. Industrial Production of 2,3-Butanediol from the Engineered Corynebacterium glutamicum vol.176, pp.8, 2012, https://doi.org/10.1007/s12010-015-1719-7
  13. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138109
  14. Metabolic Engineering of Klebsiella pneumoniae for the Production of 2-Butanone from Glucose vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0140508
  15. Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains vol.38, pp.11, 2012, https://doi.org/10.1007/s00449-015-1459-7
  16. Going beyond E. coli: autotransporter based surface display on alternative host organisms vol.32, pp.6, 2012, https://doi.org/10.1016/j.nbt.2014.12.008
  17. Exploring nuruk aroma; Identification of volatile compounds in commercial fermentation starters vol.25, pp.2, 2012, https://doi.org/10.1007/s10068-016-0054-2
  18. Strategies for efficient and economical 2,3-butanediol production: new trends in this field vol.32, pp.12, 2012, https://doi.org/10.1007/s11274-016-2161-x
  19. Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis vol.46, pp.4, 2012, https://doi.org/10.1080/10826068.2015.1045603
  20. Vector promoters used in Klebsiella pneumoniae vol.63, pp.5, 2012, https://doi.org/10.1002/bab.1423
  21. High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes vol.11, pp.10, 2012, https://doi.org/10.1371/journal.pone.0165076
  22. Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies vol.10, pp.None, 2012, https://doi.org/10.1186/s13068-017-0992-9
  23. Recruiting Energy-Conserving Sucrose Utilization Pathways for Enhanced 2,3-Butanediol Production in Bacillus subtilis vol.5, pp.12, 2012, https://doi.org/10.1021/acssuschemeng.7b03636
  24. Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris : strain construction, characterization and fermentation vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1031-1
  25. Construction of nitrogen-fixing Klebsiella variicola GN02 expression vector pET28a-Lac-EGFP and its colonization of Pennisetum giganteum z.x.lin roots vol.33, pp.1, 2012, https://doi.org/10.1080/13102818.2019.1638301
  26. Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries vol.24, pp.1, 2012, https://doi.org/10.1007/s12257-018-0346-x
  27. Microbial production of 2,3-butanediol for industrial applications vol.46, pp.11, 2012, https://doi.org/10.1007/s10295-019-02231-0
  28. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol vol.25, pp.None, 2012, https://doi.org/10.1016/j.btre.2019.e00397
  29. Metabolic regulation and optimization of oxygen supply enhance the 2,3‐butanediol yield of the novel Klebsiella sp. isolate FSoil 024 vol.16, pp.11, 2012, https://doi.org/10.1002/biot.202100279
  30. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances vol.54, pp.None, 2012, https://doi.org/10.1016/j.biotechadv.2021.107783