References
- Blomqvist, K., M. Nikkola, P. Lehtovaara, M. L. Suihko, U. Airaksinen, K. B. Straby, et al. 1993. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J. Bacteriol. 175: 1392-1404. https://doi.org/10.1128/jb.175.5.1392-1404.1993
- Garg, S. K. and A. Jain. 1995. Fermentative production of 2,3-butanediol. A review. Bioresour. Technol. 51: 103-109. https://doi.org/10.1016/0960-8524(94)00136-O
- Ji, X. J., H. Huang, S. Li, J. Du, and M. Lian. 2008. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol. Lett. 30: 731-734. https://doi.org/10.1007/s10529-007-9599-8
- Ji, X. J., H. Huang, and P. K. Ouyang. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 3: 351-364.
- Ji, X. J., H. Huang, J. G. Zhu, L. J. Ren, Z. K. Nie, J. Du, and S. Li. 2010. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751-1758. https://doi.org/10.1007/s00253-009-2222-2
- Ledingham, G. A. and A. C. Neish. 1954. Fermentative production of 2,3-butanediol, pp. 27-93. In L. A. Underkofler and R. J. Hickey (eds.). Industrial Fermentations. Chemical Publishing Co., New York, USA.
- Ma, C. Q., A. L. Wang, J. Y. Qin, L. X. Li, X. L. Ai, T. Y. Jiang, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82: 49-57. https://doi.org/10.1007/s00253-008-1732-7
- Mayer, D., V. Schlensog, and A. Bock. 1995. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J. Bacteriol. 177: 5261-5269. https://doi.org/10.1128/jb.177.18.5261-5269.1995
- Petrov, K. and P. Petrova. 2009. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 84: 659-665. https://doi.org/10.1007/s00253-009-2004-x
- Qin, J. Y., Z. J. Xiao, C. Q. Ma, N. Z. Xie, P. H. Liu, and P. Xu. 2006. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese J. Chem. Eng. 14: 132-136. https://doi.org/10.1016/S1004-9541(06)60050-5
- Syu, M. J. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 83: 358-363.
- Xiu, Z. L. and A. P. Zeng. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926. https://doi.org/10.1007/s00253-008-1387-4
- Yan, Y., C. C. Lee, and J. C. Liao. 2009. Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org. Biomoloc. Chem. 7: 3914-3917. https://doi.org/10.1039/b913501d
- Yu, E. K. C. and J. N. Saddler. 1983. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations. Appl. Environ. Microbiol. 46: 630-635.
Cited by
- Selective Production of 2,3-Butanediol and Acetoin by a Newly Isolated Bacterium Klebsiella oxytoca M1 vol.170, pp.8, 2012, https://doi.org/10.1007/s12010-013-0291-2
-
Effects of Oxygen Supply and Mixed Sugar Concentration on
${\small{D}}$ -Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1 vol.23, pp.4, 2013, https://doi.org/10.4014/jmb.1212.12021 - Recent Insights in the Removal of Klebseilla Pathogenicity Factors for the Industrial Production of 2,3-Butanediol vol.23, pp.7, 2012, https://doi.org/10.4014/jmb.1302.02066
- A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30 vol.98, pp.3, 2012, https://doi.org/10.1007/s00253-013-4959-x
- The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis vol.37, pp.3, 2012, https://doi.org/10.1007/s00449-013-0999-y
- Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene vol.80, pp.19, 2012, https://doi.org/10.1128/aem.02069-14
- Redistribution of Carbon Flux toward 2,3-Butanediol Production in Klebsiella pneumoniae by Metabolic Engineering vol.9, pp.10, 2012, https://doi.org/10.1371/journal.pone.0105322
- Inactivation of the virulence factors from 2,3-butanediol-producing Klebsiella pneumoniae vol.99, pp.22, 2012, https://doi.org/10.1007/s00253-015-6861-1
- High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1 vol.8, pp.None, 2015, https://doi.org/10.1186/s13068-015-0336-6
- Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production vol.42, pp.5, 2012, https://doi.org/10.1007/s10295-015-1598-5
- Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid vol.99, pp.12, 2012, https://doi.org/10.1007/s00253-015-6442-3
- Industrial Production of 2,3-Butanediol from the Engineered Corynebacterium glutamicum vol.176, pp.8, 2012, https://doi.org/10.1007/s12010-015-1719-7
- Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138109
- Metabolic Engineering of Klebsiella pneumoniae for the Production of 2-Butanone from Glucose vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0140508
- Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains vol.38, pp.11, 2012, https://doi.org/10.1007/s00449-015-1459-7
- Going beyond E. coli: autotransporter based surface display on alternative host organisms vol.32, pp.6, 2012, https://doi.org/10.1016/j.nbt.2014.12.008
- Exploring nuruk aroma; Identification of volatile compounds in commercial fermentation starters vol.25, pp.2, 2012, https://doi.org/10.1007/s10068-016-0054-2
- Strategies for efficient and economical 2,3-butanediol production: new trends in this field vol.32, pp.12, 2012, https://doi.org/10.1007/s11274-016-2161-x
- Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis vol.46, pp.4, 2012, https://doi.org/10.1080/10826068.2015.1045603
- Vector promoters used in Klebsiella pneumoniae vol.63, pp.5, 2012, https://doi.org/10.1002/bab.1423
- High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes vol.11, pp.10, 2012, https://doi.org/10.1371/journal.pone.0165076
- Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies vol.10, pp.None, 2012, https://doi.org/10.1186/s13068-017-0992-9
- Recruiting Energy-Conserving Sucrose Utilization Pathways for Enhanced 2,3-Butanediol Production in Bacillus subtilis vol.5, pp.12, 2012, https://doi.org/10.1021/acssuschemeng.7b03636
- Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris : strain construction, characterization and fermentation vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1031-1
- Construction of nitrogen-fixing Klebsiella variicola GN02 expression vector pET28a-Lac-EGFP and its colonization of Pennisetum giganteum z.x.lin roots vol.33, pp.1, 2012, https://doi.org/10.1080/13102818.2019.1638301
- Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries vol.24, pp.1, 2012, https://doi.org/10.1007/s12257-018-0346-x
- Microbial production of 2,3-butanediol for industrial applications vol.46, pp.11, 2012, https://doi.org/10.1007/s10295-019-02231-0
- The current strategies and parameters for the enhanced microbial production of 2,3-butanediol vol.25, pp.None, 2012, https://doi.org/10.1016/j.btre.2019.e00397
- Metabolic regulation and optimization of oxygen supply enhance the 2,3‐butanediol yield of the novel Klebsiella sp. isolate FSoil 024 vol.16, pp.11, 2012, https://doi.org/10.1002/biot.202100279
- Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances vol.54, pp.None, 2012, https://doi.org/10.1016/j.biotechadv.2021.107783