References
-
Champion, E., I. Andrei, C. Moulis, J. Boutet, K. Descroix, S. Morel, et al. 2009. Design of
${\alpha}$ -transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J. Am. Chem. Soc. 131: 7379-7389. https://doi.org/10.1021/ja900183h - Cho, H. K., H. H. Kim, D. H. Seo, J. H. Jung, J. H. Park, N. I. Baek, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
- Guerin, F., S. Barbe, S. Pizzut-Serin, G. Potocki-Veronese, D. Guieysse, V. Guillet, et al. 2011. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. J. Biol. Chem. 287: 6642-6654.
- Jung, J. H., D. H. Seo, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
- Kang, H. J., C. K. Jeong, M. U. Jang, S. H. Choi, M. H. Kim, J. B. Ahn, et al. 2009. Expression of cyclomaltodextrinase gene from Bacillus halodurans C-125 and characterization of its multisubstrate specificity. Food Sci. Biotechnol. 18: 776-781.
- Kim, H. S., H. J. Park, S. Heu, and J. Jung. 2004. Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines. J. Bacteriol. 186: 411-418. https://doi.org/10.1128/JB.186.2.411-418.2004
-
Okada, G. and E. J. Hehre. 1974. New studies on amylosucrase, a bacterial
${\alpha}$ -D-glucosylase that directly converts sucrose to a glycogen-like${\alpha}$ -glucan. J. Biol. Chem. 249: 126-135. - Pizzut-Serin, S., G. Potocki-Veronese, B. A. van der Veen, C. Albenne, P. Monsan, and M. Remaud-Simeon. 2005. Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Lett. 579: 1405-1410. https://doi.org/10.1016/j.febslet.2004.12.097
-
Putaux, J. L., G. Potocki-Veronese, M. Remaud-Simeon, and A. Buleon. 2006.
${\alpha}$ -D-Glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7: 1720-1728. https://doi.org/10.1021/bm050988v - Schneider, J., C. Fricke, H. Overwin, and B. Hofer. 2011. High level expression of a recombinant amylosucrase gene and selected properties of the enzyme. Appl. Microbiol. Biotechnol. 89: 1821-1829. https://doi.org/10.1007/s00253-010-3000-x
-
Seo, D. H., J. H. Jung, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Highly selective biotransformation of arbutin to arbutin-
${\alpha}$ -glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60: 113-118. https://doi.org/10.1016/j.molcatb.2009.04.006 - Seo, D. H., J. H. Jung, S. J. Ha, S. H. Yoo, T. J. Kim, J. Cha, and C. S. Park. 2008. Molecular cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity, pp. 125-140. In K. H. Park (eds.). Carbohydrate-Active Enzymes-Structure, Function and Application. CRC Press, Boca Raton
-
Skov, L. K., O. Mirza, A. Henriksen, G. P. De Montalk, M. Remaud-Simeon, P. Sarcabal, et al. 2001. Amylosucrase, a glucan-synthesizing enzyme from the
${\alpha}$ -amylase family. J. Biol. Chem. 276: 25273-25278. https://doi.org/10.1074/jbc.M010998200 - Unell, M., N. Kabelitz, J. K. Jansson, and H. J. Heipieper. 2007. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 266: 138-143. https://doi.org/10.1111/j.1574-6968.2006.00502.x
Cited by
- Is it possible to stabilize a thermophilic protein further using sequences and structures of mesophilic proteins: a theoretical case study concerning DgAS vol.10, pp.None, 2013, https://doi.org/10.1186/1742-4682-10-26
- Essential role of amino acid position 226 in oligosaccharide elongation by amylosucrase from Neisseria polysaccharea vol.111, pp.9, 2012, https://doi.org/10.1002/bit.25236
- Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0273-3
- Biosynthesis of Glucosyl Glycerol, a Compatible Solute, Using Intermolecular Transglycosylation Activity of Amylosucrase from Methylobacillus flagellatus KT vol.173, pp.4, 2014, https://doi.org/10.1007/s12010-014-0889-z
- GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families vol.73, pp.14, 2016, https://doi.org/10.1007/s00018-016-2244-8
- Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives vol.26, pp.11, 2012, https://doi.org/10.4014/jmb.1606.06036
- Identification of an α-(1,4)-Glucan-Synthesizing Amylosucrase from Cellulomonas carboniz T26 vol.65, pp.10, 2017, https://doi.org/10.1021/acs.jafc.6b05667
- Comparative study on amylosucrases derived from Deinococcus species and catalytic characterization and use of amylosucrase derived from Deinococcus wulumuqiensis vol.3, pp.1, 2019, https://doi.org/10.1515/amylase-2019-0002
- Thermostable Amylosucrase from Calidithermus timidus DSM 17022: Insight into Its Characteristics and Tetrameric Conformation vol.67, pp.35, 2019, https://doi.org/10.1021/acs.jafc.9b04023
- Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase vol.29, pp.1, 2012, https://doi.org/10.1007/s10068-019-00686-6