DOI QR코드

DOI QR Code

Functional Expression of Amylosucrase, a Glucan-Synthesizing Enzyme, from Arthrobacter chlorophenolicus A6

  • Seo, Dong-Ho (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Jung, Jong-Hyun (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Choi, Hyun-Chang (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Cho, Hyun-Kuk (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Kim, Hee-Hang (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Ha, Suk-Jin (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Yoo, Sang-Ho (Department of Food Science and Technology, and Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Park, Cheon-Seok (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Received : 2012.01.31
  • Accepted : 2012.05.01
  • Published : 2012.09.28

Abstract

A gene (acas) designated as ${\alpha}$-amylase was cloned from Arthrobacter chlorophenolicus A6. The multiple amino acid sequence analysis and functional expression of acas revealed that this gene really encoded an amylosucrase (ASase) instead of ${\alpha}$-amylase. In fact, the recombinant enzyme exhibited typical ASase activity by showing both sucrose hydrolysis and glucosyltransferase activities. The purified enzyme has a molecular mass of 72 kDa and exhibits optimal hydrolysis activity at $45^{\circ}C$ and a pH of 8.0. The analysis of the oligomeric state of ACAS with gel permeation chromatography revealed that the ACAS existed as a monomer.

Keywords

References

  1. Champion, E., I. Andrei, C. Moulis, J. Boutet, K. Descroix, S. Morel, et al. 2009. Design of ${\alpha}$-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J. Am. Chem. Soc. 131: 7379-7389. https://doi.org/10.1021/ja900183h
  2. Cho, H. K., H. H. Kim, D. H. Seo, J. H. Jung, J. H. Park, N. I. Baek, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
  3. Guerin, F., S. Barbe, S. Pizzut-Serin, G. Potocki-Veronese, D. Guieysse, V. Guillet, et al. 2011. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. J. Biol. Chem. 287: 6642-6654.
  4. Jung, J. H., D. H. Seo, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
  5. Kang, H. J., C. K. Jeong, M. U. Jang, S. H. Choi, M. H. Kim, J. B. Ahn, et al. 2009. Expression of cyclomaltodextrinase gene from Bacillus halodurans C-125 and characterization of its multisubstrate specificity. Food Sci. Biotechnol. 18: 776-781.
  6. Kim, H. S., H. J. Park, S. Heu, and J. Jung. 2004. Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines. J. Bacteriol. 186: 411-418. https://doi.org/10.1128/JB.186.2.411-418.2004
  7. Okada, G. and E. J. Hehre. 1974. New studies on amylosucrase, a bacterial ${\alpha}$-D-glucosylase that directly converts sucrose to a glycogen-like ${\alpha}$-glucan. J. Biol. Chem. 249: 126-135.
  8. Pizzut-Serin, S., G. Potocki-Veronese, B. A. van der Veen, C. Albenne, P. Monsan, and M. Remaud-Simeon. 2005. Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Lett. 579: 1405-1410. https://doi.org/10.1016/j.febslet.2004.12.097
  9. Putaux, J. L., G. Potocki-Veronese, M. Remaud-Simeon, and A. Buleon. 2006. ${\alpha}$-D-Glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7: 1720-1728. https://doi.org/10.1021/bm050988v
  10. Schneider, J., C. Fricke, H. Overwin, and B. Hofer. 2011. High level expression of a recombinant amylosucrase gene and selected properties of the enzyme. Appl. Microbiol. Biotechnol. 89: 1821-1829. https://doi.org/10.1007/s00253-010-3000-x
  11. Seo, D. H., J. H. Jung, S. J. Ha, M. C. Song, J. Cha, S. H. Yoo, et al. 2009. Highly selective biotransformation of arbutin to arbutin-${\alpha}$-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B Enzym. 60: 113-118. https://doi.org/10.1016/j.molcatb.2009.04.006
  12. Seo, D. H., J. H. Jung, S. J. Ha, S. H. Yoo, T. J. Kim, J. Cha, and C. S. Park. 2008. Molecular cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity, pp. 125-140. In K. H. Park (eds.). Carbohydrate-Active Enzymes-Structure, Function and Application. CRC Press, Boca Raton
  13. Skov, L. K., O. Mirza, A. Henriksen, G. P. De Montalk, M. Remaud-Simeon, P. Sarcabal, et al. 2001. Amylosucrase, a glucan-synthesizing enzyme from the ${\alpha}$-amylase family. J. Biol. Chem. 276: 25273-25278. https://doi.org/10.1074/jbc.M010998200
  14. Unell, M., N. Kabelitz, J. K. Jansson, and H. J. Heipieper. 2007. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 266: 138-143. https://doi.org/10.1111/j.1574-6968.2006.00502.x

Cited by

  1. Is it possible to stabilize a thermophilic protein further using sequences and structures of mesophilic proteins: a theoretical case study concerning DgAS vol.10, pp.None, 2013, https://doi.org/10.1186/1742-4682-10-26
  2. Essential role of amino acid position 226 in oligosaccharide elongation by amylosucrase from Neisseria polysaccharea vol.111, pp.9, 2012, https://doi.org/10.1002/bit.25236
  3. Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0273-3
  4. Biosynthesis of Glucosyl Glycerol, a Compatible Solute, Using Intermolecular Transglycosylation Activity of Amylosucrase from Methylobacillus flagellatus KT vol.173, pp.4, 2014, https://doi.org/10.1007/s12010-014-0889-z
  5. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families vol.73, pp.14, 2016, https://doi.org/10.1007/s00018-016-2244-8
  6. Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives vol.26, pp.11, 2012, https://doi.org/10.4014/jmb.1606.06036
  7. Identification of an α-(1,4)-Glucan-Synthesizing Amylosucrase from Cellulomonas carboniz T26 vol.65, pp.10, 2017, https://doi.org/10.1021/acs.jafc.6b05667
  8. Comparative study on amylosucrases derived from Deinococcus species and catalytic characterization and use of amylosucrase derived from Deinococcus wulumuqiensis vol.3, pp.1, 2019, https://doi.org/10.1515/amylase-2019-0002
  9. Thermostable Amylosucrase from Calidithermus timidus DSM 17022: Insight into Its Characteristics and Tetrameric Conformation vol.67, pp.35, 2019, https://doi.org/10.1021/acs.jafc.9b04023
  10. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase vol.29, pp.1, 2012, https://doi.org/10.1007/s10068-019-00686-6