DOI QR코드

DOI QR Code

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Jeong, Hyun Duck (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Jung, Bongjin (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Lee, Eun Young (Department of Environmental and Energy Engineering, The University of Suwon)
  • Received : 2012.04.24
  • Accepted : 2012.05.11
  • Published : 2012.09.28

Abstract

The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).

Keywords

References

  1. An, Y. J., Y. H. Joo, I. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl. Microbiol. Biotechnol. 65: 611-619.
  2. Baek, K., C. Park, H. Oh, B. Yoon, and H. Kim. 2010. Diversity and abundance of ammonia-oxidizing bacteria in activated sludge treating different types of wastewater. J. Microbiol. Biotechnol. 20: 1128-1133. https://doi.org/10.4014/jmb.0907.07021
  3. Briones, A. and L. Raskin. 2003. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotech. 14: 270-276. https://doi.org/10.1016/S0958-1669(03)00065-X
  4. Chih-Ju, G. J. and G. C. Huang. 2003. A pilot study for oil refinery wastewater treatment using a fixed film bio-reactor. Adv. Environ. Res. 7: 463-469. https://doi.org/10.1016/S1093-0191(02)00016-3
  5. Dalmau, E., J. L. Montesinos, M. Lotti, and C. Casas. 2000. Effect of different carbon sources on lipase production by Candida rugosa. Enzyme Microb. Technol. 26: 657-663. https://doi.org/10.1016/S0141-0229(00)00156-3
  6. Egli, K., C. Langer, H. R. Siegrist, A. J. B. Zehnder, M. Wagner, and J. R. Van Der Meer. 2003. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl. Environ. Microbiol. 69: 3213-3222. https://doi.org/10.1128/AEM.69.6.3213-3222.2003
  7. Fang, H. Y. and M. S. Chou. 1993. Nitrification of ammonia nitrogen in refinery wastewater. Water Res. 27: 1761-1765. https://doi.org/10.1016/0043-1354(93)90114-W
  8. Hagopian, D. S. and J. G. Rily. 1998. A closer look at the bacteriology of nitrification. Aquacult. Eng. 18: 223-224. https://doi.org/10.1016/S0144-8609(98)00032-6
  9. Heo, S. H. and B. S. Kim. 2009. Production and recovery of oxygenated fatty acids from oleic acid by Flavobacterium sp. strain DS5. Korean Chem. Eng. Res. 47: 620-623.
  10. Hong, S. H., K. C. Shin, and E. Y. Lee. 2010. Characterization of a nitrogen fixing bacteria Mycobacterium hominis sp. AKC-10. Kor. J. Microbiol. Biotechnol. 38: 302-307.
  11. Jiang, X., R. Yan, and J. H. Tay. 2009. Simultaneous autotrophic biodegradation of $H_2S$ and $NH_3$ in a biotrickling filter. Chemosphere 75: 1350-1355. https://doi.org/10.1016/j.chemosphere.2009.02.028
  12. Joo, H. S., M. Hirai, and M. Shoda. 2005. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J. Biosci. Bioeng. 100: 184-191. https://doi.org/10.1263/jbb.100.184
  13. Junier, P., V. Molina, C. Dorador, O. Hadas, O. S. Kim, T. Junier, et al. 2010. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85: 425-440. https://doi.org/10.1007/s00253-009-2228-9
  14. Kelly, J. J., S. Siripong, J. McCormack, L. R. Janus, H. Urakawa, S. E. Fantroussi, et al. 2005. DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. Water Res. 39: 3229-3238. https://doi.org/10.1016/j.watres.2005.05.044
  15. Kim, D. J. 2007. Environmental Pollution and Remediation, 1st Ed. Korea University Press, Korea.
  16. Kim, D., D. Lee, and J. Keller. 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour. Technol. 97: 459-468. https://doi.org/10.1016/j.biortech.2005.03.032
  17. Kim, H. S., Y. J. Kim, J. S. Chung, and Q. Xie. 2002. Longterm operation of a biofilter for simultaneous removal of $H_2S$ and $NH_3$. J. Air Waste Manage. 52: 1389-1398. https://doi.org/10.1080/10473289.2002.10470871
  18. Kim, D., H. Kim, J. Kim, K. Suh, and I. Kong. 1997. Isolation and characterization of ammonia oxidizing bacteria, Nitrosomonas sp. PK1. Kor. J. Life Sci. 7: 107-111.
  19. Kumar, V. J., C. Achuthan, N. J. Manju, R. Philip, and I. S. Singh. 2009. Activated packed bed bioreactor for rapid nitrification in brackish water hatchery systems. J. Ind. Microbiol. Biotechnol. 36: 355-365. https://doi.org/10.1007/s10295-008-0504-9
  20. Laia, C. L. and G. G. Jesus. 2004. Use of amoA as a new molecular marker for ammonia-oxidizing bacteria. J. Microbiol. Methods 57: 69-78. https://doi.org/10.1016/j.mimet.2003.11.019
  21. Layton, A. C., H. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Sayler. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108. https://doi.org/10.1128/AEM.71.2.1105-1108.2005
  22. Li, H., M. Yang, Y. Zhang, T. Yu, and Y. Kamagata. 2006. Nitrification performance and microbial community dynamic in a submerged membrane bioreactor with complete sludge retention. J. Biotechnol. 123: 60-70. https://doi.org/10.1016/j.jbiotec.2005.10.001
  23. Limpiyakorn, T., P. Sonthiphand, C. Rongsayamanont, and C. Polprasert. 2011. Abundance of amoA genes of ammoniaoxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour. Technol. 102: 3694-3701. https://doi.org/10.1016/j.biortech.2010.11.085
  24. Malhautier, L., C. Gracian, J. C. Roux, J. L. Fanlo, and P. Le Cloirec. 2003. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere 50: 145-153. https://doi.org/10.1016/S0045-6535(02)00395-8
  25. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leuwenhoek 73: 127-141. https://doi.org/10.1023/A:1000669317571
  26. Nunan, N., T. J. Daniell, B. K. Singh, A. Papert, J. W. McNicol, and J. I. Prosser. 2005. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl. Environ. Microbiol. 71: 6784-6792. https://doi.org/10.1128/AEM.71.11.6784-6792.2005
  27. Palomares, C., M. J. Torres, A. Torres, J. Aznar, and J. C. Palomares. 2003. Rapid detection and identification of Staphylococcus aureus from blood culture specimens using realtime fluorescence PCR. Diagn. Microbiol. Infect. Dis. 45: 183-189. https://doi.org/10.1016/S0732-8893(02)00542-4
  28. Park, H. D. and D. R. Noguera. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38: 3275-3286. https://doi.org/10.1016/j.watres.2004.04.047
  29. Paungfoo, C., P. Prasertsan, N. Intrasungkha, L. L. Blackall, and R. Bhamidimarri. 2003. Enrichment of nitrifying microbial communities from shrimp farms and commercial inocula. Water Sci. Technol. 48: 143-150.
  30. Porcellato, D., H. Gronnevik, K. Rudi, J. Narvhus, and S. B. Skeie. 2012. Rapid lactic acid bacteria identification in dairy products by high-resolution melt analysis of DGGE bands. Lett. Appl. Microbiol. 54: 344-351. https://doi.org/10.1111/j.1472-765X.2012.03210.x
  31. Prosser, J. I. 1989. Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181.
  32. Purkhold, U., A. Pommerening-Roser, S. Juretschko, M. C. Schmid, H. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000
  33. Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammoniaoxidizing populations. Appl. Environ. Microbiol. 63: 4704- 4712.
  34. Siripong, S. and B. Rittmann. 2007. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plant. Water Res. 41: 1110-1120. https://doi.org/10.1016/j.watres.2006.11.050
  35. Sylvia, D. M., J. J. Fuhrmann, P. G. Hartel, and D. A. Zuberer. 2009. Principles and Applications of Soil Microbiology, pp. 401-409. 2nd Ed. Prentice Hall, Pearson.
  36. Urakawa, H., H. Maki, S. Kawabata, T. Fujiwara, H. Ando, T. Kawai, et al. 2006. Abundance and population structure of ammonia-oxidizing bacteria that inhabit canal sediments receiving effluents from municipal wastewater treatment plants. Appl. Environ. Microbiol. 72: 6845-6850. https://doi.org/10.1128/AEM.00807-06
  37. Wagner, M. and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13: 218-227. https://doi.org/10.1016/S0958-1669(02)00315-4
  38. Wells, G. F., H. D. Park, C. H. Yeung, B. Eggleston, C. A. Francis, and C. S. Criddle. 2009. Ammonia-oxidizing communities in a highly aerated fullscale activated sludge bioreactor: Betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11: 2310-2328. https://doi.org/10.1111/j.1462-2920.2009.01958.x
  39. Yan, J., J. M. Huub, O. den Camp, M. S. M. Jetten, Y. Y. Hu, and S. C. M. Haaijer. 2010. Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen. Syst. Appl. Microbiol. 33: 407-415. https://doi.org/10.1016/j.syapm.2010.08.003

Cited by

  1. Advances in microbial bioremediation and the factors influencing the process vol.11, pp.6, 2012, https://doi.org/10.1007/s13762-013-0412-z
  2. Shifts in the pelagic ammonia-oxidizing microbial communities along the eutrophic estuary of Yong River in Ningbo City, China vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.01180
  3. Effects of Supplementary Composts on Microbial Communities and Rice Productivity in Cold Water Paddy Fields vol.25, pp.5, 2012, https://doi.org/10.4014/jmb.1407.07066