DOI QR코드

DOI QR Code

The Importance of Weathered Crude Oil as a Source of Hydrocarbonoclastic Microorganisms in Contaminated Seawater

  • Sheppard, Petra J. (School of Biological Sciences, Flinders University) ;
  • Simons, Keryn L. (School of Biological Sciences, Flinders University) ;
  • Kadali, Krishna K. (School of Biological Sciences, Flinders University) ;
  • Patil, Sayali S. (School of Biological Sciences, Flinders University) ;
  • Ball, Andrew S. (School of Biological Sciences, Flinders University)
  • Received : 2012.01.30
  • Accepted : 2012.05.03
  • Published : 2012.09.28

Abstract

This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just $6.6{\times}10^1\;CFU/ml$, with these values dramatically increased in the weathered oil, reaching $4.1{\times}10^4\;CFU/ml$. The weathered oil (dominated by > $C_{30}$ fractions; $750,000{\pm}150,000mg/l$) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations $3,400{\pm}700mg/l$ and $1,700{\pm}340mg/l$ for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% ($254,000{\pm}40,000mg/l$) and 66% ($285,000{\pm}45,000mg/l$) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.

Keywords

References

  1. Adetutu, E. M., K. Thorpe, S. Bourne, X. Cao, E. Shahsavari, G. Kirby, and A. S. Ball. 2011. Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia 103: 959-968. https://doi.org/10.3852/10-256
  2. Australian Maritime Safety Authority. 2012. Major Oil Spills in Australia. Australian Government.
  3. Bushnell, L. and H. Haas. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41: 653-673.
  4. Chang, Y., J. Stephen, A. Richter, A. Venosa, J. Bruggemann, S. Macnaughton, et al. 2000. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: Effect of profiling method. J Microbiol. Methods 40: 19-31. https://doi.org/10.1016/S0167-7012(99)00134-7
  5. Coulon, F., B. A. McKew, A. M. Osborn, T. J. McGenity, and K. N. Timmis. 2007. Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ. Microbiol. 9: 177-186. https://doi.org/10.1111/j.1462-2920.2006.01126.x
  6. Cui, Z., Q. Lai, C. Dong, and Z. Shao. 2008. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ. Microbiol. 10: 2138-2149. https://doi.org/10.1111/j.1462-2920.2008.01637.x
  7. Dilly, O., J. Bloem, A. Vos, and J. Munch. 2004. Bacterial diversity in agricultural soils during litter decomposition. Appl. Environ. Microbiol. 70: 468-474. https://doi.org/10.1128/AEM.70.1.468-474.2004
  8. Endresen, O., E. Sorgard, J. K. Sundet, S. B. Dalsoren, I. S. A. Isaksen, T. F. Berglen, and G. Gravir. 2003. Emission from international sea transportation and environmental impact. J. Geophys. Res. 108: 4560. https://doi.org/10.1029/2002JD002898
  9. Engelhardt, M., K. Daly, R. Swannell, and I. Head. 2001. Isolation and characterization of a novel hydrocarbon-degrading, gram positive bacterium, isolated from the intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J. Appl. Microbiol. 90: 237-247. https://doi.org/10.1046/j.1365-2672.2001.01241.x
  10. Harayama, S., Y. Kasai, and A. Hara. 2004. Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 15: 205-214. https://doi.org/10.1016/j.copbio.2004.04.002
  11. Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305-315.
  12. Lekunberri, I., A. Calvo-Diaz, E. Teira, X. Moran, F. Peters, M. Nieto-Cid, et al. 2010. Changes in bacterial activity and community composition caused by exposure to a simulated oil spill in microcosm and mesocosm experiments. Aquat. Microb. Ecol. 59: 169-183. https://doi.org/10.3354/ame01380
  13. Makadia, T. H., E. M. Adetutu, K. L. Simons, D. Jardine, P. J. Sheppard, and A. S. Ball. 2011. Re-use of remediated soils for the bioremediation of waste oil sludge. J. Environ. Manag. 92: 866-871. https://doi.org/10.1016/j.jenvman.2010.10.059
  14. Marzorati, M., L. Wittebolle, N. Boon, D. Daffonchio, and W. Verstraete. 2008. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ. Microbiol. 10: 1571-1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x
  15. McKew, B., F. Coulon, A. Osborn, K. Timmis, and T. McGenity. 2007. Determining the identity and roles of oilmetabolizing marine bacteria from the Thames estuary, UK. Environ. Microbiol. 9: 165-176. https://doi.org/10.1111/j.1462-2920.2006.01125.x
  16. Muyzer, G., E. de Waal, and A. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  17. Pantaroto de Vasconcellos, S., E. Crespim, G. Feitosa Da Cruz, D. Barbosa Senatore, K. C. Marques Simioni, E. Vaz Dos Santos Neto, et al. 2009. Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin. Org. Chem. 40: 574-588.
  18. Patil, S., M. Kumar, and A. S. Ball. 2010. Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl. Microbiol. Biotechnol. 87: 353-363. https://doi.org/10.1007/s00253-010-2539-x
  19. Piedad Díaz, M., S. J. Grigson, C. J. Peppiatt, and J. G. Burgess. 2000. Isolation and characterization of novel hydrocarbondegrading euryhaline consortia from crude oil and mangrove sediments. Mar. Biotechnol. 2: 522-532. https://doi.org/10.1007/s101260000037
  20. Prince, R. and J. Clark. 2004. Bioremediation of marine oil spills, pp. 495-512. In R. Vazquez-Dubalt and R. Quintero-Ramirez (eds.). Studies in Surface and Catalysis. Elsevier.
  21. Shao, Z. 2010. Enrichment and isolation of hydrocarbon degraders, pp. 3777-3785. In K. N. Timmis (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg.
  22. Sheppard, P. J., E. M. Adetutu, T. H. Makadia, and A. S. Ball. 2011. Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil. Soil Res. 49: 261-269. https://doi.org/10.1071/SR10159
  23. Trindade, P., L. Sobral, A. Rizzo, S. Leite, and A. Soriano. 2005. Bioremediation of a weathered and a recently oilcontaminated soil from Brazil: A comparison study. Chemosphere 58: 515-522. https://doi.org/10.1016/j.chemosphere.2004.09.021
  24. Yakimov, M., K. Timmis, and P. Golyshin. 2007. Obligate oildegrading marine bacteria. Curr. Opin. Biotechnol. 18: 257-266. https://doi.org/10.1016/j.copbio.2007.04.006
  25. Yuste, L., M. Corbella, M. Turiegano, U. Karlson, A. Puyet, and F. Rojo. 2000. Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol. Ecol. 32: 69-75. https://doi.org/10.1111/j.1574-6941.2000.tb00700.x
  26. Zhu, X., A. Venosa, M. Suidan, and K. Lee. 2001. Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands. U.S. Environmental Protection Agency.

Cited by

  1. Diversity, Distribution and Hydrocarbon Biodegradation Capabilities of Microbial Communities in Oil-Contaminated Cyanobacterial Mats from a Constructed Wetland vol.9, pp.12, 2012, https://doi.org/10.1371/journal.pone.0114570
  2. Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01384
  3. Diversity of bacteria and fungi associated with tarballs: Recent developments and future prospects vol.117, pp.1, 2012, https://doi.org/10.1016/j.marpolbul.2017.01.067