DOI QR코드

DOI QR Code

Cloning and Identification of a New Group Esterase (Est5S) from Noncultured Rumen Bacterium

  • Kim, Min Keun (Gyeongsangnam-do Agricultural Research and Extension Service) ;
  • Kang, Tae Ho (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Jungho (Department of Agricultural Chemistry, Sunchon National University) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University) ;
  • Yun, Han Dae (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
  • Received : 2012.01.02
  • Accepted : 2012.04.20
  • Published : 2012.08.28

Abstract

The gene encoding an esterase enzyme was cloned from a metagenomic library of cow rumen bacteria. The esterase gene (est5S) was 1,026 bp in length, encoding a protein of 366 amino acid residues with a calculated molecular mass of 40,168 Da. The molecular mass of the enzyme was estimated to be 40,000 Da. The Est5S protein contains the Gly-X-Ser-X-Gly motif found in most bacterial and eukaryotic serine hydrolases. However, the Asp or Glu necessary for the catalytic triad [Ser-Asp-(Glu)-His] was not present, indicating Est5S represents a novel member of the GHSQG family of esterolytic enzymes. BlastP in the NCBI database analysis of Est5S revealed homology to hypothetical proteins and it had no homology to previous known lipases and esterases. Est5S was optimally active at pH 7.0 and $40^{\circ}C$. Among the p-nitrophenyl acylesters tested, high enzymatic activities were observed on the short-chain p-nitrophenyl acylesters, such as p-nitrophenyl acetate, etc. The conserved serine residue ($Ser_{190}$) was shown to be important for Est5S activity. The primers that amplified the est5S gene did not show any relative band with 49 species of culturable rumen bacteria. This implies that a new group esterase gene, est5S, may have come from a noncultured cow rumen bacterium.

Keywords

References

  1. Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177-183. https://doi.org/10.1042/0264-6021:3430177
  2. Cho, K. M., S. Y. Hong, S. M. Lee, Y. H. Kim, G. G. Kahng, H. Kim, and H. D. Yun. 2006. A cel44C-man26A gene of endophytic aenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73: 618-630. https://doi.org/10.1007/s00253-006-0523-2
  3. Choi, Y. J., C. B. Miguez, and B. H. Lee. 2004. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Appl. Environ. Microbiol. 70: 3213-3221. https://doi.org/10.1128/AEM.70.6.3213-3221.2004
  4. Clarke, D. G. and J. C. Hawke. 1970. Studies on rumen metabolism. VI. In vitro hydrolysis of triglyceride and isolation of a lipolytic fraction. J. Sci. Food Agric. 21: 446-452. https://doi.org/10.1002/jsfa.2740210902
  5. Devaiah, M. K., S. A. Islam, K. M. Cho, R. K. Math, Y. H. Lee, H. Kim, and H. D. Yun. 2009. Expression of esterase gene in yeast for organophosphates biodegradation. Pest. Biochem. Physiol. 94: 15-20. https://doi.org/10.1016/j.pestbp.2009.02.006
  6. Elend, C., C. Schmeisser, C. Leggewie, P. Babiak, J. D. Carballeira, H. L. Steele, et al. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645. https://doi.org/10.1128/AEM.72.5.3637-3645.2006
  7. Fay, J. P., K. D. Jakober, K. J. Cheng, and J. W. Costerton. 1990. Esterase activity of pure cultures of rumen bacteria as expressed by the hydrolysis of p-nitrophenylpalmitate. Can. J. Microbiol. 368: 585-589.
  8. Flythe, M. D. 2009. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Lett. Appl. Microbiol. 48: 712-717.
  9. Green, R., J. L. Schotte, L. Swenson, Y. Wei, and Z. S. Derewneda. 1992. Crystallization and preliminary crystallographic data of Streptomyces scabies extracellular esterase. J. Mol. Biol. 227: 569-571. https://doi.org/10.1016/0022-2836(92)90908-3
  10. Henderson, C. 1971. A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. J. Gen. Microbiol. 65: 81-89. https://doi.org/10.1099/00221287-65-1-81
  11. Hespell, R. B. and P. J. O'Bryan. 1992. Purification and characterization of an ${\alpha}$-l-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58: 1082-1088.
  12. Jaeger, K. E., S. Ransac, B. W. Dijkstra, C. Colson, M. Heuvel, and O. Misset. 1994. Bacteria lipase. FEMS Microbiol. Rev. 15: 29-63. https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  13. Kademi, A., N. Ait-Abdelkader, L. Fakhreddine, and J. C. Baratti. 1999. Thermostable esterase activity from newly isolated moderate thermophilic bacteria strains. Enzyme Microb. Technol. 24: 332-338. https://doi.org/10.1016/S0141-0229(98)00127-6
  14. Khalmeyezer, V., I. Fischer, U. T. Bornscheuer, and J. Altenbuchner. 1999. Screening, nucleotides sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. 65: 477-482.
  15. Kim, H. K., Y. J. Jung, W. C. Choi, H. S. Ryu, T. K. Oh, and J. K. Lee. 2004. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235: 349-355.
  16. Kim, H. K., S. Y. Park, J. K. Lee, and T. K. Oh. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62: 66-71. https://doi.org/10.1271/bbb.62.66
  17. Kwon, M. A., H. S. Kim, J. Y. Oh, B. K. Song, and J. K. Song. 2009. Gene cloning, expression, and characterization of a new carboxylesterase from Serratia sp. SES-01: Comparison with Escherichia coli BioHe enzyme. J. Microbiol. Biotechnol. 19: 147-154. https://doi.org/10.4014/jmb.0804.287
  18. Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693. https://doi.org/10.1016/S0168-6445(03)00072-X
  19. Lanz, W. W. and P. P. Williams. 1973. Characterization of esterase produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens. J. Bacteriol. 113: 1170-1176.
  20. Lee, S. W., K. H. Won, H. K. Lim, J. C. Kim, G. J. Choi, and K. Y. Cho. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726. https://doi.org/10.1007/s00253-004-1722-3
  21. Li, Y. L., H. Li, and D. C. Li. 2009. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomiun thermophilum and its expression in Pichia pastoris. J. Appl. Microbiol. 106: 1867-1875. https://doi.org/10.1111/j.1365-2672.2009.04171.x
  22. Lorenz, P. and C. Schleper. 2002. Metagenome - a challenging source of enzyme discovery. J. Mol. Catal. B 20: 13-19.
  23. Nakai, K. and P. Horton. 1999. PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1: 34-36.
  24. Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, et al. 1992. The alpha/beta hydrolase fold. Protein Eng. 5: 197-211. https://doi.org/10.1093/protein/5.3.197
  25. Ranjan, R., A. Grover, R. K. Kapardar, and R. Sharma. 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Biophys. Res. Commum. 335: 57-65. https://doi.org/10.1016/j.bbrc.2005.07.046
  26. Rees, H. C., S. Grant, B. Jones, W. D. Grant, and S. Heaphy. 2003. Detecting cellulose and esterase enzymes activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7: 415-421. https://doi.org/10.1007/s00792-003-0339-2
  27. Schloss, P. D. and J. Handelsman. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303-310. https://doi.org/10.1016/S0958-1669(03)00067-3
  28. Schrag, J. D. and M. Cygler. 1997. Lipases and alpha/beta hydrolase fold. Methods Enzymol. 284: 85-107.
  29. Simons, J. W., J. W. Boots, M. P. Kats, A. J. Slotboom, M. R. Egmond, and H. M. Verheij. 1997. Dissecting the catalytic mechanism of staphylococcal lipases using carbamate substrates: Chain length selectivity, interfacial activation, and cofactor dependence. Biochemistry 36: 14539-14550. https://doi.org/10.1021/bi9713714
  30. Tao, W., M. H. Lee, M. Y. Yoon, J. C. Kim, S. Malhotra, J. Wu, E. C. Hwang, and S. W. Lee. 2011. Characterization of two metagenome-derived esterases that reactivate hloramphenicol by counteracting chloramphenicol acetyltransferase. J. Microbiol. Biotechnol. 21: 1203-1210. https://doi.org/10.4014/jmb.1107.07034
  31. Virk, A. P., P. Sharma, and N. Capalash. 2011. A new esterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. J. Microbiol. Biotechnol. 21: 667-674. https://doi.org/10.4014/jmb.1103.03008
  32. Voget, S., C. Leggewie, A. Uesbeck, C. Raasch, K. E. Jaeger, and W. R. Streit. 2003. Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69: 6235-6242. https://doi.org/10.1128/AEM.69.10.6235-6242.2003
  33. Yun, J., S. Kang, S. Park, H. Yoon, M. J. Kim, S. Heu, and S. Ryu. 2004. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70: 7229-7235. https://doi.org/10.1128/AEM.70.12.7229-7235.2004

Cited by

  1. Est10: A Novel Alkaline Esterase Isolated from Bovine Rumen Belonging to the New Family XV of Lipolytic Enzymes vol.10, pp.5, 2012, https://doi.org/10.1371/journal.pone.0126651
  2. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families vol.7, pp.None, 2012, https://doi.org/10.1038/srep44103