DOI QR코드

DOI QR Code

Comparison of Ammonia-Oxidizing Bacterial Community Structure in Membrane-Assisted Bioreactors Using PCR-DGGE and FISH

  • Ziembinska, A. (The Silesian University of Technology, Environmental Biotechnology Department) ;
  • Ciesielski, S. (University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology) ;
  • Gnida, A. (The Silesian University of Technology, Environmental Biotechnology Department) ;
  • Zabczynski, S. (The Silesian University of Technology, Environmental Biotechnology Department) ;
  • Surmacz-Gorska, J. (The Silesian University of Technology, Environmental Biotechnology Department) ;
  • Miksch, K. (The Silesian University of Technology, Environmental Biotechnology Department)
  • Received : 2012.01.11
  • Accepted : 2012.04.07
  • Published : 2012.08.28

Abstract

The ammonia-oxidizing bacterial (AOB) communities in three membrane bioreactors (MBRs) were monitored for 2 months after an acclimation period in order to investigate the influence of sludge age and medium type on AOB changeability and its connection with nitrification effectiveness. One MBR with a sludge age of 4 days was fed with a synthetic medium, whereas the other two with sludge ages of 8 and 32 days were fed with landfill leachate. The research revealed that landfill leachate can be effectively treated in an MBR with a higher sludge age for longer periods of time and that this improvement in performance was correlated with an increase in AOB biodiversity. Interestingly, the medium type has a stronger influence on AOB biocenosis formation than the sludge age.

Keywords

References

  1. Aktan, S. B. and A. Salih. 2006. Fluorescent in situ hybridization (FISH) for the detection of bacterial community in activated sludge from textile factories. Environ. Technol. 27: 63-69. https://doi.org/10.1080/09593332708618615
  2. Alvarez-Vazquez, H., B. Jefferson, and S. J. Judd. 2004. Membrane bioreactors vs conventional biological treatment of landfill leachate: A brief review. J. Chem. Technol. Biotechnol. 79: 1043-1049. https://doi.org/10.1002/jctb.1072
  3. Baek, S. H. and K. Pagilla. 2009. Microbial community structures in conventional activated sludge system and membrane bioreactor (MBR). Biotechnol. Bioprocess Eng. 14: 848-853. https://doi.org/10.1007/s12257-008-0303-1
  4. Cheung, K. C., L. M. Chu, and M. H. Wong. 1997. Ammonia stripping as a pretreatment for landfill leachate. Water Air Soil Poll. 94: 209-221.
  5. Ciesielski, S., D. Kulikowska, E. Kaczowka, and P. Kowal. 2010. Characterization of bacterial structures in a two-stage moving-bed biofilm reactor (MBBR) during nitrification in landfill leachate. J. Microbiol. Biotechnol. 20: 1140-1151. https://doi.org/10.4014/jmb.1001.01015
  6. Daims, H., A. Brühl, R. Amann, K. H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434-444. https://doi.org/10.1016/S0723-2020(99)80053-8
  7. Daims, H., K. Stoecker, and M. Wagner. 2005. Fluorescent in situ hybridization for the detection of prokaryotes, pp. 213-239. In A. M. Osborn and C. J. Smith (eds.). Advanced Methods in Molecular Microbial Ecology. Bios-Garland, Abingdon, UK.
  8. Du, C., Z. Wu, E. Xiao, Q. Zhou, S. Cheng, W. Liang, and F. He. 2008. Bacterial diversity in activated sludge from a consecutively aerated submerged membrane bioreactor treating domestic wastewater. J. Environ. Sci. 20: 1210-1217. https://doi.org/10.1016/S1001-0742(08)62211-1
  9. Fenu, A., G. Guglielmi, J. Jimenez, M. Sperandio, D. Saroj, B. Lesjean, et al. 2010. Activated sludge model (ASM) based modeling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water Res. 44: 4272-4294. https://doi.org/10.1016/j.watres.2010.06.007
  10. Hermanowicz, I. and K. Dojlido. 1999. Physico-chemical Analysis of Water and Wastewater. Arkady, Warszawa, Poland.
  11. Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammoniaoxidizing bacteria of the ${\beta}$ subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489-1497.
  12. Laitinen, N., L. Antero, and V. Jari. 2007. Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination 204: 8-16. https://doi.org/10.1016/j.desal.2006.02.028
  13. Lerner, M., N. Stahl, and N. I. Galil. 2007. Comparative study of MBR and activated sludge in the treatment of paper mill wastewater. Water Sci. Technol. 55: 23-29.
  14. Li, P., Y. Wang, Y. Wang, K. Liu, and L. Tong. 2010. Bacterial community structure and diversity during establishment of an anaerobic bioreactor to treat swine wastewater. Water Sci. Technol. 62: 243-252.
  15. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  16. Otawa, K., R. Asano, Y. Ohba, T. Sasaki, E. Kawamura, F. Koyama, et al. 2006. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environ. Microbiol. 8: 1985-1996. https://doi.org/10.1111/j.1462-2920.2006.01078.x
  17. Sadri, S., N. Cicek, and J. Van Gulck. 2008. Aerobic treatment of landfill leachate using a submerged membrane bioreactor - prospects for on-site use. Environ. Technol. 29: 899-907. https://doi.org/10.1080/09593330802075379
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  19. Silva, C. C., C. J. Ederson, A. P. R. Torres, M. P. Sousa, and V. M. J. Santiago. 2010. Investigation of bacterial diversity in membrane bioreactor and conventional activated sludge processes from petroleum refineries using phylogenetic and statistical approaches. J. Microbiol. Biotechnol. 20: 447-459.
  20. Visvanathan, C., M. K. Choudary, M. T. Montalbo, and V. Jegatheesan. 2007. Landfill leachate treatment using thermophilic membrane bioreactor. Desalination 204: 8-16. https://doi.org/10.1016/j.desal.2006.02.028
  21. Zhou, S., W. Choahai, K. Lin, and W. Haizhen. 2010. PCRDGGE as a supplemental method verifying dominance of culturable microorganisms from activated sludge. J. Microbiol. Biotechnol. 20: 1592-1596. https://doi.org/10.4014/jmb.0908.08012
  22. Ziembinska, A., S. Ciesielski, and K. Miksch. 2009. Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE). J. Gen. Appl. Microbiol. 55: 373-380. https://doi.org/10.2323/jgam.55.373
  23. Ziembinska, A., A. Raszka, J. Truu, J. Surmacz-Gorska, and K. Miksch. 2007. Molecular analysis of temporal changes of a bacterial community structure in activated sludge using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH). Pol. J. Microbiol. 56: 119-127. https://doi.org/10.1099/jmm.0.46844-0

Cited by

  1. Characterization of Denitrifying Phosphorus Removal Microorganisms in a Novel Two-Sludge Process by Combining Chemical with Microbial Analysis vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/360503
  2. Membrane fouling behavior and microbial community succession in a submerged membrane bioreactor treating harbor oily wastewater vol.17, pp.9, 2012, https://doi.org/10.1631/jzus.a1500289