DOI QR코드

DOI QR Code

Application of Antifungal CFB to Increase the Durability of Cement Mortar

  • Park, Jong-Myong (School of Life Sciences and Institute for Microorganisms, Kyungpook National University) ;
  • Park, Sung-Jin (School of Life Sciences and Institute for Microorganisms, Kyungpook National University) ;
  • Kim, Wha-Jung (School of Architecture and Architectural Engineering, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences and Institute for Microorganisms, Kyungpook National University)
  • Received : 2011.12.15
  • Accepted : 2012.03.09
  • Published : 2012.07.28

Abstract

Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calcite-forming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed $CaCO_3$ precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at $18^{\circ}C$ for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the $CaCO_3$ precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

Keywords

References

  1. Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529. https://doi.org/10.1038/246527a0
  2. De Muynck, W., N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
  3. De Muynck, W., N. De Belle, and W. Verstraete. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108: 62-72. https://doi.org/10.1111/j.1365-2672.2009.04395.x
  4. Diakumaku, E., A. A. Gorbushina, W. E. Krumbeina, L. Panina, and S. Soukharjevski. 1995. Black fungi in marble and limestones - an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167: 295-304. https://doi.org/10.1016/0048-9697(95)04590-W
  5. Do, J. G., H. Song, H. S. So, and Y. S. Soh. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35: 371-376. https://doi.org/10.1016/j.cemconres.2004.06.021
  6. Fang, Z. D. 1988. Research Methods for Plant Disease, pp. 248-249. 3rd Ed. Chinese Agriculture Press, Beijing (in Chinese).
  7. Ghosh, P., S. Mandal, B. D. Chattopadhyaya, and S. Pal. 2005. Use of microorganisms to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
  8. Ghosh, S., M. Biswas, and B. D. Chattopadhyaya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem.Concr. Comp. 31: 93-98. https://doi.org/10.1016/j.cemconcomp.2009.01.001
  9. Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangena. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235. https://doi.org/10.1016/j.ecoleng.2008.12.036
  10. Lowenstein, H. A. and S. Weiner. 1988. On Biomineralization. Oxford University Press, New York.
  11. Nolan, E., P. A. M. Basheer, and A. E. Long. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build Mater. 9: 267-272. https://doi.org/10.1016/0950-0618(95)00020-G
  12. Pablo, H. P. and L. J. du Toit. 2006. Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. J. Plant Dis. 90: 137-145. https://doi.org/10.1094/PD-90-0137
  13. Pangallo, D., K. Chovanova, A. Simonovicova, and P. Ferianc. 2009. Investigation of microbial community isolated from indoor artworks and air environment: Identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55: 277-287. https://doi.org/10.1139/w08-136
  14. Park, J. M., S. J. Park, and S.-Y. Ghim. 2010. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
  15. Park, S. J., N. Y. Lee, W. J. Kim, and S.-Y. Ghim. 2010. Application of bacteria isolated from Dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.
  16. Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S.-Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
  17. Park, S. K., J. H. J. Kim, J. W. Nam, H. D. Phan, and J. K. Kim. Development of anti-fungal mortar and concrete using zeolite and zeocarbon microcapsules. 2009. Cem. Concr. Comp. 31: 447-453. https://doi.org/10.1016/j.cemconcomp.2009.04.012
  18. Queener, S. W. and J. J. Capone. 1974. Simple method for preparation of homogeneous spore suspensions useful in industrial strain selection. Appl. Microbiol. 28: 498-500.
  19. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using microorganism. ACI Mater. 98: 3-9.
  20. Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
  21. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  22. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6
  23. Th. Warscheid. and J. Braams. 2010. Biodeterioration of stone: A review. Int. Biodeterior. 46: 343-368.
  24. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025

Cited by

  1. The Effects of Paenibacillus polymyxa E681 on Antifungal and Crack Remediation of Cement Paste vol.69, pp.4, 2012, https://doi.org/10.1007/s00284-014-0604-x
  2. 순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석 vol.25, pp.2, 2012, https://doi.org/10.5352/jls.2015.25.2.189
  3. 다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정 vol.25, pp.2, 2012, https://doi.org/10.5352/jls.2015.25.2.237
  4. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211 vol.8, pp.None, 2012, https://doi.org/10.3389/fmicb.2017.00411
  5. Comparative Study on the Effects of Various Modified Admixtures on the Mechanical Properties of Styrene-Acrylic Emulsion-Based Cement Composite Materials vol.13, pp.1, 2012, https://doi.org/10.3390/ma13010008