DOI QR코드

DOI QR Code

Production of Platinum Nanoparticles and Nanoaggregates Using Neurospora crassa

  • Castro-Longoria, E. (Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE)) ;
  • Moreno-Velasquez, S.D. (Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE)) ;
  • Vilchis-Nestor, A.R. (Center for Research in Sustainable Chemistry, UAEM-UNAM) ;
  • Arenas-Berumen, E. (Faculty of Engineering, Autonomous University of Baja California (UABC)) ;
  • Avalos-Borja, M. (CNyN (UNAM))
  • 투고 : 2011.10.31
  • 심사 : 2012.02.16
  • 발행 : 2012.07.28

초록

Fungal biomass and fungal extract of the nonpathogenic fungus Neurospora crassa were successfully used as reducing agents for the biosynthesis of platinum nanoparticles (PtNPs). The experiment was carried out by exposing the fungal biomass or the fungal extract to a 0.001 M precursor solution of hexachloroplatinic(IV) acid ($H_2PtCl_6$). A change of color of the biomass from pale yellow to dark brown was the first indication of possible formation of PtNPs by the fungus. Subsequent analyses confirmed the intracellular biosynthesis of single PtNPs (4-35 nm in diameter) and spherical nanoaggregates (20-110 nm in diameter). Using the fungal extract, similar results were obtained, producing rounded nanoaggregates of Pt single crystals in the range of 17-76 nm.

키워드

참고문헌

  1. Ahmad, A., P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry. 2002. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J. Am. Chem. Soc. 124: 12108-12109. https://doi.org/10.1021/ja027296o
  2. Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313-318. https://doi.org/10.1016/S0927-7765(02)00174-1
  3. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne. 2008. Biosensing with plasmonic nanosensors Nat. Mater. 7: 442-453. https://doi.org/10.1038/nmat2162
  4. Castro-Longoria, E., A. R. Vilchis-Nestor, and M. Avalos-Borja. 2011. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B Biointerfaces 83: 42-48. https://doi.org/10.1016/j.colsurfb.2010.10.035
  5. Dickson, D. P. E. 1999. Nanostructured magnetism in living systems. J. Magn. Magn. Mater. 203: 46-49. https://doi.org/10.1016/S0304-8853(99)00178-X
  6. Duran, N., P. D. Marcato, O. L. Alves, G. I. H. De Souza, and E. Esposito. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Biomed. Nanotechnol. 8: 5-7.
  7. Kim, Y.-C., N.C. Park, J. S. Shin, S. R. Lee, Y. J. Lee, and D. J. Moon. 2003. Partial oxidation of ethylene to ethylene oxide over nanosized $Ag/{\alpha}-Al_2O_3$ catalysts. Catal. Today 87: 153-162. https://doi.org/10.1016/j.cattod.2003.09.012
  8. Klaus, T., R. Joerger, E. Olsson, and C. G. Granqvist. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96: 13611-13614. https://doi.org/10.1073/pnas.96.24.13611
  9. Konishi, Y., K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi, and T. Uruga. 2006. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 128: 648-653.
  10. Kroger, N., R. Deutzmann, and M. Sumper. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286: 1129-1132. https://doi.org/10.1126/science.286.5442.1129
  11. Kumar, S. A., A. A. Ansary, A. Ahmad, and M. I. Khan. 2007. Biosynthesis of extracellular CdSe quantum dots by the fungus Fusarium oxysporum. J. Biomed. Nanotechnol. 3: 190-194. https://doi.org/10.1166/jbn.2007.027
  12. Langhammer, C., Z. Yuan, I. Zoric, and B. Kasemo. 2006. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6: 833-838. https://doi.org/10.1021/nl060219x
  13. Liu, Z., X. Y. Ling, X. Su, and J. Y. Lee. 2004. Carbonsupported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108: 8234-8240. https://doi.org/10.1021/jp049422b
  14. Liu, Y. and H. Wang. 2007. Nanomedicine: Nanotechnology tackles tumours. Nat. Nanotecnol. 2: 20-21. https://doi.org/10.1038/nnano.2006.188
  15. Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, et al. 2001. Bioreduction of ${AuCl_4}^-$ ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40: 3585-3588. https://doi.org/10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K
  16. Mukherjee, P., M. Roy, B. P. Mandal, G. K. Dey, P. K. Mukherjee, J. Ghatak, et al. 2008. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19: 075103. https://doi.org/10.1088/0957-4484/19/7/075103
  17. Narayanan, K. B. and N. Sakthivel. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156: 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  18. O'Hayre, R., S. J. Lee, S. W. Cha, and F. B. Prinz. 2002. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. J. Power Sources 109: 483-493. https://doi.org/10.1016/S0378-7753(02)00238-0
  19. Rautaray, D., A. Sanyal, S. D. Adyanthaya, A. Ahmad, and M. Sastry. 2004. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20: 6827-6833. https://doi.org/10.1021/la049244d
  20. Riddin, T. L., M. Gericke, and C. G. Whiteley. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17: 3482-3489. https://doi.org/10.1088/0957-4484/17/14/021
  21. Robinson, B. H., A. N. Khan-Lodhi, and T. Towey. 1989. In M. P. Pileni (ed.). Studies in Physical and Theoretical Chemistry, Vol. 65, p. 198. Elsevier, Amsterdam.
  22. Sanghi, R. and P. Verma. 2010. pH dependant fungal proteins in the "green" synthesis of gold nanoparticles. Adv. Mat. Lett. 1: 193-199. https://doi.org/10.5185/amlett.2010.5124
  23. Sastry, M., A. Ahmad, M. I. Khan, and R. Kumar. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162-170.
  24. Shankar, S. S., A. Rai, A. Ahmad, and M. Sastry. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
  25. Vilchis-Nestor, A. R., V. Sanchez-Mendieta, M. A. Camacho- Lopez, R. M. Gomez-Espinosa, M. A. Camacho-Lopez, and J. A. Arenas-Alatorre. 2008. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett. 62: 3103-3105. https://doi.org/10.1016/j.matlet.2008.01.138
  26. Vogel, H. J. 1956. A convenient growth medium for Neurospora. Microbial Genet. Bull. 13: 42-43.
  27. Xie, J. P., Y. J. Lee, D. I. C. Wang, and Y. P. Ting. 2007. Highyield synthesis of complex gold nanostructures in a fungal system. J. Phys. Chem. C 111: 16858-16865. https://doi.org/10.1021/jp0752668

피인용 문헌

  1. SERS Properties of Different Sized and Shaped Gold Nanoparticles Biosynthesized under Different Environmental Conditions by Neurospora crassa Extract vol.8, pp.10, 2012, https://doi.org/10.1371/journal.pone.0077486
  2. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications vol.20, pp.9, 2012, https://doi.org/10.3390/molecules200916540
  3. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles vol.42, pp.6, 2012, https://doi.org/10.3109/1040841x.2015.1137860
  4. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application vol.11, pp.1, 2012, https://doi.org/10.1186/s11671-016-1311-2
  5. Platinum nanoparticles in nanobiomedicine vol.46, pp.16, 2012, https://doi.org/10.1039/c7cs00152e
  6. Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species vol.31, pp.2, 2012, https://doi.org/10.1016/j.wsj.2017.11.001
  7. Synthesis, Characterization, and Catalytic Activity of Platinum Nanoparticles on Bovine-Bone Powder: A Novel Support vol.2018, pp.None, 2012, https://doi.org/10.1155/2018/6482186
  8. A Review on Mycosynthesis, Mechanism, and Characterization of Silver and Gold Nanoparticles vol.8, pp.1, 2012, https://doi.org/10.1007/s12668-017-0437-8
  9. Biosynthesis of silver nanoparticles by fungi and their antibacterial activity vol.16, pp.2, 2012, https://doi.org/10.1007/s13762-018-1814-8
  10. Bacterium, Fungus, and Virus Microorganisms for Energy Storage and Conversion vol.3, pp.12, 2012, https://doi.org/10.1002/smtd.201900596
  11. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles vol.9, pp.1, 2012, https://doi.org/10.1515/gps-2020-0041
  12. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles vol.9, pp.1, 2012, https://doi.org/10.1515/gps-2020-0041
  13. Biological Nanofactories: Using Living Forms for Metal Nanoparticle Synthesis vol.20, pp.None, 2012, https://doi.org/10.2174/1389557520999201116163012
  14. Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review vol.6, pp.4, 2012, https://doi.org/10.3390/jof6040351
  15. Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements vol.50, pp.24, 2012, https://doi.org/10.1080/10643389.2019.1705103
  16. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences vol.11, pp.40, 2021, https://doi.org/10.1039/d1ra04273d
  17. Fungi as veritable tool in current advances in nanobiotechnology vol.7, pp.11, 2012, https://doi.org/10.1016/j.heliyon.2021.e08480
  18. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review vol.204, pp.no.pa, 2012, https://doi.org/10.1016/j.envres.2021.111963