DOI QR코드

DOI QR Code

Flagellin Administration Protects Respiratory Tract from Burkholderia cepacia Infection

  • Received : 2011.12.01
  • Accepted : 2012.01.25
  • Published : 2012.07.28

Abstract

Burkholderia cepacia is an important pathogen that often causes pneumonia in immunocompromised individuals. Here, it was demonstrated that the TLR5 agonist flagellin could locally activate innate immunity. This was characterized by rapid expressions of IL-$1{\beta}$, TNF-${\alpha}$, and iNOS mRNA and a delay in the expression of IL-10 mRNA. A significant elevation in the IL-$1{\beta}$, TNF-${\alpha}$, and nitric oxide levels was also noted. In the respiratory tract, flagellin induced neutrophil infiltration into the airways, which was observed by histopathological examination and confirmed by the neutrophil count and level of myeloperoxidase activity. This was concomitant with a high activity of alveolar macrophages that engulfed and killed B. cepacia in vitro. The flagellin mucosal treatment improved the B. cepacia clearance in the mouse lung. Thus, the present findings illustrate the profound stimulatory effect of flagellin on the lung mucosal innate immunity, a response that needs to be exploited therapeutically to prevent the development of respiratory tract infection by B. cepacia.

Keywords

References

  1. Albiger, B., A. Sandgren, H. Katsuragi, U. Meyer-Hoffert, K. Beiter, F. Wartha, et al. 2005. Myeloid differentiation factor 88- dependent signaling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell Microbiol. 7: 1603-1615. https://doi.org/10.1111/j.1462-5822.2005.00578.x
  2. Andersen-Nissen, E., T. R. Hawn, K. D. Smith, A. Nachman, A. E. Lampano, S. Uematsu, et al. 2007. Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol. 178: 4717-4720.
  3. Araujo, A., A. Pagnier, P. Frange, I. Wroblewski, M.-J. Stasia, P. Morand, and D. Plantaz. 2011. Lymphohistiocytic activation syndrome and Burkholderia cepacia complex infection in a child revealing chronic granulomatous disease and chromosomal integration of the HHV-6 genome. Arch. Pediatr. 18: 416-419 https://doi.org/10.1016/j.arcped.2011.01.006
  4. Baldwin, A. S. 1996. The NF-kB and IkB proteins: New discoveries and insights. Annu. Rev. Immunol. 14: 649-681. https://doi.org/10.1146/annurev.immunol.14.1.649
  5. Berrington, W. R. and T. R. Hawn. 2007. Mycobacterium tuberculosis, macrophages, and the innate immune response: Does common variation matter? Immunol. Rev. 219: 167-186. https://doi.org/10.1111/j.1600-065X.2007.00545.x
  6. Dowling, D., C. M. Hamilton, and S. M. O'Neill. 2008. A comparative analysis of cytokine responses, cell surface marker expression and MAPKs in DCs matured with LPS compared with a panel of TLR ligands. Cytokine 41: 254-262. https://doi.org/10.1016/j.cyto.2007.11.020
  7. Drevinek, P., S. Vosahlikova, K. Dedeckova, O. Cinek, and E. Mahenthiralingam. 2010. Direct culture-independent strain typing of Burkholderia cepacia complex in sputum samples from patients with cystic fibrosis. J. Clin Microbiol. 48: 1888-1891. https://doi.org/10.1128/JCM.02359-09
  8. Eaves-Pyles, T., K. Murthy, L. Liaudet, L. Virag, G. Ross, F. G. Soriano, et al. 2001. Flagellin, a novel mediator of Salmonellainduced epithelial activation and systemic inflammation: I kappa B alpha degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J. Immunol. 166: 1248-1260.
  9. Engeman, T., A. V. Gorbachev, D. D. Kish, and R. L. Fairchild. 2004. The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J. Leukoc. Biol. 76: 941-949. https://doi.org/10.1189/jlb.0304193
  10. Feuillet, V., S. Medjane, I. Mondor, O. Demaria, P. P. Pagni, J. E. Galán, et al. 2006. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc. Natl. Acad. Sci. USA 103: 12487-12492. https://doi.org/10.1073/pnas.0605200103
  11. Fouad, D., E. Siendones, G. Costan, and J. Muntane. 2004. Role of NF-kappaB activation and nitric oxide expression during PGE protection against d-galactosamine-induced cell death in cultured rat hepatocytes. Liver Int. 24: 227-236. https://doi.org/10.1111/j.1478-3231.2004.00913.x
  12. Hamill, R. J., E. D. Houston, P. R. Georghiou, C. E. Wright, M. A. Koza, and R. M. Cadle. 1995. An outbreak of Burkholderia (formerly Pseudomonas) cepacia respiratory tract colonization and infection associated with nebulized albuterol therapy. Annu. Intern. Med. 122: 762-766. https://doi.org/10.7326/0003-4819-122-10-199505150-00005
  13. Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, et al. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099-1103. https://doi.org/10.1038/35074106
  14. Hayashi, F., T. K. Means, and A. D. Luster. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102: 2660-2669. https://doi.org/10.1182/blood-2003-04-1078
  15. Hirano, S. 1996. Migratory responses of PMN after intraperitoneal and intratracheal administration of lipopolysaccharide. Am. J. Physiol. 270: L836-L845.
  16. Honko, A. N. and S. B. Mizel. 2004. Mucosal administration of flagellin induces innate immunity in the mouse lung. Infect. Immun. 72: 6676-6679. https://doi.org/10.1128/IAI.72.11.6676-6679.2004
  17. Hwang, J. H., J. C. Chen, S. Y. Yang, M. F. Wang, and Y. C. Chan. 2011. Expression of tumor necrosis factor-a and interleukin- 1b genes in the cochlea and inferior colliculus in salicylateinduced tinnitus. J. Neuroinflammation 8: 30. https://doi.org/10.1186/1742-2094-8-30
  18. Jang, C. H., J. H. Choi, M. S. Byun, and D. M. Jue. 2006. Chloroquine inhibits production of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45: 703-710. https://doi.org/10.1093/rheumatology/kei282
  19. Janot, L., J. C. Sirard, T. Secher, N. Noulin, L. Fick, S. Akira, et al. 2009. Radioresistant cells expressing TLR5 control the respiratory epithelium's innate immune responses to flagellin. Eur. J. Immunol. 39: 1587-1596. https://doi.org/10.1002/eji.200838907
  20. Jones, R. M., V. M. Sloane, H. Wu, L. Luo, A. Kumar, M. V. Kumar, et al. 2011. Flagellin administration protects gut mucosal tissue from irradiation-induced apoptosis via MKP-7 activity. Gut 60: 648-665. https://doi.org/10.1136/gut.2010.223891
  21. Kadioglu, A., W. Coward, V. Colston, C. R. Hewitt, and P. W. Andrew. 2004. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect. Immun. 72: 2689-2697. https://doi.org/10.1128/IAI.72.5.2689-2697.2004
  22. Kinnebrew, M. A., C. Ubeda, L. A. Zenewicz, N. Smith, R. A. Flavell, and E. G. Pamer. 2010. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycinresistant Enterococcus infection. J. Infect. Dis. 201: 534-543. https://doi.org/10.1086/650203
  23. Kobayashi, Y. 2008. The role of chemokines in neutrophil biology. Front. Biosci. 13: 2400-2407. https://doi.org/10.2741/2853
  24. Lowry, O. H., N. J. Rosenbrough, L. A. Farr, and R. J. Randall. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  25. Messiaen, A. S., T. Verbrugghen, C. Declerck, R. Ortmann, M. Schlitzer, H. Nelis, et al. 2011. Resistance of the Burkholderia cepacia complex to fosmidomycin and fosmidomycin derivatives. Int. J. Antimicrob. Agents 38: 261-264.
  26. Mohler, J., E. Azoulay-Dupuis, C. Amory-Rivier, J. X. Mazoit, J. P. Bedos, V. Rieux, and P. Moine. 2003. Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumococcal pneumonia. Intensive Care Med. 29: 808-816.
  27. Moors, M. A., L. Li, and S. B. Mizel. 2001. Activation of interleukin-1 receptor associated kinase by Gram-negative flagellin. Infect. Immun. 69: 4424-4429. https://doi.org/10.1128/IAI.69.7.4424-4429.2001
  28. Munoz, N., L. Van Maele, J. M. Marques, A. Rial, J. C. Sirard, and J. A. Chabalgoity. 2010. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect. Immun. 78: 4226-4233. https://doi.org/10.1128/IAI.00224-10
  29. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  30. Oshikawa, K. and Y. Sugiyama. 2003. Gene expression of Tolllike receptors and associated molecules induced by inflammatory stimuli in the primary alveolar macrophage. Biochem. Biophys. Res. Commun. 305: 649-655. https://doi.org/10.1016/S0006-291X(03)00837-4
  31. Prince, A. 2006. Flagellar activation of epithelial signaling. Am. J. Respir. Cell Mol. Biol. 34: 548-551. https://doi.org/10.1165/rcmb.2006-0022SF
  32. Ramos, H. C., M. Rumbo, and J. C. Sirard. 2004. Bacterial flagellins: Mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12: 509-517. https://doi.org/10.1016/j.tim.2004.09.002
  33. Rolli, J., N. Rosenblatt-Velin, J. Li, N. Loukili, S. Levrand, and P. Pacher. 2010. Bacterial flagellin triggers cardiac innate immune responses and acute contractile dysfunction. PLoS ONE 5: e12687. https://doi.org/10.1371/journal.pone.0012687
  34. Sha, Q., A. Q. Truong-Tran, J. R. Plitt, L. A. Beck, and R. P. Schleimer. 2004. Activation of airway epithelial cells by tolllike receptor agonists. Am. J. Respir. Cell Mol. Biol. 31: 358-364 https://doi.org/10.1165/rcmb.2003-0388OC
  35. Sierro, F., B. Dubois, A. Coste, D. Kaiserlian, J. P. Kraehenbuhl, and J. C. Sirard. 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. USA 98: 13722-13727. https://doi.org/10.1073/pnas.241308598
  36. Skerrett, S. J., C. B. Wilson, H. D. Liggitt, and A. M. Hajjar. 2007. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell Mol. Physiol. 292: L312-L322.
  37. Tanioka, T., Y. Tamura, M. Fukaya, S. Shinozaki, J. Mao, M. Kim, et al. 2011. iNOS and NO donor decrease IRS-2 protein expression by promoting proteasome-dependent degradation in pancreatic ${\beta}$-cells: Involvement of GSK-$3{\beta}$. J. Biol. Chem. [In Press]
  38. Trinchieri, G. and A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7: 179-190. https://doi.org/10.1038/nri2038
  39. Tsai, W. C., R. M. Strieter, D. A. Zisman, J. M. Wilkowski, K. A. Bucknell, G. H. Chen, and T. J. Standiford. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infect. Immun. 65: 1870-1875.
  40. Wang, H., X. A. Tao, J. Xiang, J. Xia, Y. Huang, and B. Cheng. 2011. Neutrophils infiltration is early event of an oral mucosal xenotransplantation model. Med. Oral Patol. Oral Cir. Bucal 16: e341-e347.
  41. Yu, F. S., M. D. Cornicelli, M. A. Kovach, M. W. Newstead, X. Zeng, A. Kumar, et al. 2010. Flagellin stimulates protective lung mucosal immunity: Role of cathelicidin-related antimicrobial peptide. J. Immunol. 185: 1142-1149. https://doi.org/10.4049/jimmunol.1000509
  42. Zgair, A. K. and S. Chhibber. 2010. Immunological and pathological aspects of respiratory tract infection with Stenotrophomonas maltophilia in BALB/c mice. J. Microbiol. Biotechnol. 20: 1585-1591. https://doi.org/10.4014/jmb.1003.03013
  43. Zgair, A. K. and S. Chhibber. 2010. Stenotrophomonas maltophilia flagellin induces a compartmentalized innate immune response in mouse lung. J. Med. Microbiol. 59: 913-919. https://doi.org/10.1099/jmm.0.020107-0
  44. Zhang, X., L. Majlessi, E. Deriaud, C. Leclerc, and R. Lo-Man. 2009. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31: 761-771. https://doi.org/10.1016/j.immuni.2009.09.016
  45. Zhang, Z., J. P. Louboutin, D. J. Weiner, J. B. Goldberg, and J. M. Wilson. 2005. Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect. Immun. 73: 7151-7160. https://doi.org/10.1128/IAI.73.11.7151-7160.2005
  46. Zhang, Z., W. Reenstra, D. J. Weiner, J. P. Louboutin, and J. M. Wilson. 2007. The p38 mitogen-activated protein kinase signaling pathway is coupled to Toll-like receptor 5 to mediate gene regulation in response to Pseudomonas aeruginosa infection in human airway epithelial cells. Infect. Immun. 75: 5985-5992. https://doi.org/10.1128/IAI.00678-07
  47. Zimova-Herknerova, M., J. Myslivecek, and P. Potmesil. 2008. Retinoic acid attenuates the mild hyperoxic lung injury in newborn mice. Physiol. Res. 57: 33-40.

Cited by

  1. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates vol.10, pp.9, 2012, https://doi.org/10.1371/journal.pone.0135388
  2. Rapid Bladder Interleukin-10 Synthesis in Response to Uropathogenic Escherichia coli Is Part of a Defense Strategy Triggered by the Major Bacterial Flagellar Filament FliC and Contingent on TLR5 vol.4, pp.6, 2012, https://doi.org/10.1128/msphere.00545-19