DOI QR코드

DOI QR Code

Analysis of Expressed Sequence Tags from the Antarctic Psychrophilic Green Algae, Pyramimonas gelidicola

  • Jung, Woongsic (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Lee, Sung Gu (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Kang, Se Won (Department of Parasitology, College of Medicine and Frontier Inje Research for Science and Technology, Inje University) ;
  • Lee, Yong Seok (Department of Parasitology, College of Medicine and Frontier Inje Research for Science and Technology, Inje University) ;
  • Lee, Jun Hyuck (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Kang, Sung-Ho (Department of Polar Sciences, University of Science and Technology) ;
  • Jin, Eon Seon (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Kim, Hak Jun (Division of Polar Life Sciences, Korea Polar Research Institute)
  • Received : 2012.01.03
  • Accepted : 2012.03.04
  • Published : 2012.07.28

Abstract

Expressed sequence tags (ESTs) from the Antarctic green algae Pyramimonas gelidicola were analyzed to obtain molecular information on cold acclimation of psychrophilic microorganisms. A total of 2,112 EST clones were sequenced, generating 222 contigs and 219 singletons, and 200 contigs and 391 singletons from control ($4^{\circ}C$) and cold-shock conditions ($-2^{\circ}C$), respectively. The complete EST sequences were deposited to the DDBJ EST database (http://www.ddbj.nig.ac.jp/index-e.html) and the nucleotide sequences reported in this study are available in the DDBJ/EMBL/GenBank. These EST databases of Antarctic green algae can be used in a wide range of studies on psychrophilic genes expressed by polar microorganisms.

Keywords

References

  1. Altschul, S. F., T. L. Madan, A. A. Schaffer, J. Zhang, J. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Bell, E. M. and J. Laybourn-Parry. 2003. Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J. Phycol. 39: 644-649. https://doi.org/10.1046/j.1529-8817.2003.02152.x
  3. Burch, M. D. 1988. Annual cycle of phytoplankton in Ace Lake, an ice covered, saline meromictic lake. Hydrobiologia 165: 59-75. https://doi.org/10.1007/BF00025574
  4. Cockell, C. S., M. D. Stokes, and K. E. Korsmeyer. 2000. Overwintering strategies of Antarctic organisms. Environ. Rev. 8: 1-19. https://doi.org/10.1139/er-8-1-1
  5. Ewing, B., L. Hillier, M. C. Wendl, and P. Green. 1998. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185. https://doi.org/10.1101/gr.8.3.175
  6. Jones, H. L. J. 1997. A classification of mixotrophic protists based on their behavior. Freshwater Biol. 37: 35-43. https://doi.org/10.1046/j.1365-2427.1997.00138.x
  7. Jung, G. S., C. G. Lee, S. H. Kang, and E. S. Jin. 2007. Annotation and expression profile analysis of cDNAs from the Antarctic diatom Chaetoceros neogracile. J. Microbiol. Biotechnol. 17: 1330-1337.
  8. Kaneko, T., T. Katoh, S. Sato, A. Nakamura, E. Asamizu, and S. Tabata. 2000. Structural analysis of Arabidopsis thaliana chromosome 3. II. Sequence features of the 4,251,695 bp regions covered by 90 P1, TAC and BAC clones. DNA Res. 7: 217-221. https://doi.org/10.1093/dnares/7.3.217
  9. Kristiansen, E., S. A. Pedersen, and K. E. Zachariassen. 2008. Salt-induced enhancement of antifreeze protein activity: A salting-out effect. Cryobiology 57: 122-129. https://doi.org/10.1016/j.cryobiol.2008.07.001
  10. Madan, N. J., W. A. Marshall, and J. Laybourn-Parry. 2005. Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes. Freshwater Biol. 50: 1291-1300. https://doi.org/10.1111/j.1365-2427.2005.01399.x
  11. Maheswari, U., A. Montsant, J. Goll, S. Krishnasamy, K. R. Rajyashri, V. M. Patell, and C. Bowler. 2005. The diatom EST database. Nucleic Acids Res. 33: 344-347.
  12. Merchant, S. S., S. E. Prochnik, O. Vallon, E. H. Harris, S. J. Karpowicz, G. B. Witman, et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250. https://doi.org/10.1126/science.1143609
  13. Mock, T., A. Krell, G. Glockner, U. Koluksaoglu, and K. Valentin. 2005. Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. J. Phycol. 42: 78-85.
  14. Morgan-Kiss, R. M., J. C. Priscu, T. Pocock, L. Gudynaite- Savitch, and N. P. A. Huner. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70: 222-252. https://doi.org/10.1128/MMBR.70.1.222-252.2006
  15. Nishiyama, T., T. Fujita, T. Shin-I, M. Seki, H. Nishide, I. Uchiyama, et al. 2003. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proc. Natl. Acad. Sci. USA 100: 8007-8012. https://doi.org/10.1073/pnas.0932694100
  16. Palenik, B., J. Grimwood, A. Aerts, P. Rouze, A. Salamov, N. Putnam, et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. USA 104: 7705-7710. https://doi.org/10.1073/pnas.0611046104
  17. Pertea, G., X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, et al. 2003. TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics 19: 651-652. https://doi.org/10.1093/bioinformatics/btg034
  18. Ralph, S. G., H. J. E. Chun, N. Kolosova, D. Cooper, C. Oddy, C. E. Ritland, et al. 2008. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs form Sitka spruce (Picea sitchensis). BMC Genomics 9: 484. https://doi.org/10.1186/1471-2164-9-484
  19. Raymond, J. A. and C. A. Knight. 2003. Ice binding, recrystallization inhibition, and cryoprotective properties of iceactive substances associated with Antarctic sea ice diatoms. Cryobiology 46: 174-181. https://doi.org/10.1016/S0011-2240(03)00023-3
  20. Teoh, M. L., W. L. Chu, H. Marchant, and S. M. Phang. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16: 421-430. https://doi.org/10.1007/s10811-004-5502-3
  21. Thomson, P. G., A. McMinn, I. Kiessling, M. Watson, and P. M. Goldsworthy. 2006. Composition and succession of dinoflagellates and chrysophytes in the upper fast ice of Davis Station, East Antarctica. Polar Biol. 29: 337-345. https://doi.org/10.1007/s00300-005-0060-y
  22. Wiencke, C. and I. Dieck. 1990. Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar. Ecol. Progr. Ser. 59: 157-170.
  23. Worden, A. Z., J. H. Lee, T. Mock, P. Rouze, M. P. Simmons, A. L. Aerts, et al. 2009. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324: 268-272. https://doi.org/10.1126/science.1167222

Cited by

  1. Draft Genome Sequence of Pseudomonas pelagia CL-AP6, a Psychrotolerant Bacterium Isolated from Culture of Antarctic Green Alga Pyramimonas gelidicola vol.1, pp.5, 2012, https://doi.org/10.1128/genomea.00699-13
  2. Isolation and Characterization of Antifreeze Proteins from the Antarctic Marine Microalga Pyramimonas gelidicola vol.16, pp.5, 2012, https://doi.org/10.1007/s10126-014-9567-y