References
- Ahren, D., M. Tholander, C. Fekete, B. Rajashekar, E. Friman, T. Johansson, and A. Tunlid. 2005. Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151: 789-803. https://doi.org/10.1099/mic.0.27485-0
- Cao, Y., M. Li, and Y Xia. 2011. Mapmi gene contributes to growth, stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. J. Invertebr. Pathol. 108: 7-12. https://doi.org/10.1016/j.jip.2011.06.002
- Chou, K. C. and H. B. Shen. 2010. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One 5: e9931. https://doi.org/10.1371/journal.pone.0009931
- Clarkson, J. M. and A. K. Charnley. 1996. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 4: 197-203. https://doi.org/10.1016/0966-842X(96)10022-6
- Gao, Q., K. Jin, S. H. Ying, Y. Zhang, G. Xiao, Y. Shang, et al. 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet. 7: e1001264. https://doi.org/10.1371/journal.pgen.1001264
- Grell, M. N., P. Mouritzen, and H. Giese. 2003. A Blumeria graminis gene family encoding proteins with a C-terminal variable region with homologues in pathogenic fungi. Gene 311: 181-192.
- He, M. and Y. Xia. 2009. Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. FEMS Microbiol. Lett. 291: 127-135. https://doi.org/10.1111/j.1574-6968.2008.01447.x
- Justesen, A., S. Somerville, and H. Giese. 1996. Isolation and characterization of two novel genes expressed in germinating conidia of the obligate biotroph Erysiphe graminis f. sp. hordei. Gene 17: 131-135.
- Liu, J., Y. Cao, and Y. Xia. 2010. Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 105: 132-138. https://doi.org/10.1016/j.jip.2010.05.012
- Lomer, C. J., R. P. Bateman, D. L. Johnson, J. Langewald, and M. B. Thomas. 2001. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46: 667-702. https://doi.org/10.1146/annurev.ento.46.1.667
- Peng, G., Z. Wang, Y. Yin, D. Zeng, and Y. Xia. 2008. Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Prot. 27: 1244-1250. https://doi.org/10.1016/j.cropro.2008.03.007
- Tang, Q. Y. and M. G. Feng. 2002. DPS Data Processing System for Practical Statistics. Science Press, Beijing.
- Vega, F. E., F. Posada, M. C. Aime, M. Pava-Ripoll, F. Infante, and S. A. Rehner. 2008. Entomopathogenic fungal endophytes. Biol. Control 46: 72-82. https://doi.org/10.1016/j.biocontrol.2008.01.008
- Wang, C. and R. J. St. Leger. 2007. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J. Biol. Chem. 282: 21110-21115. https://doi.org/10.1074/jbc.M609592200
- Xue, C., G. Park, W. Choi, L. Zheng, R. A. Dean, and J. R. Xu. 2002. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14: 2107-2119. https://doi.org/10.1105/tpc.003426
Cited by
- The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum vol.15, pp.11, 2012, https://doi.org/10.1111/1462-2920.12166
- Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network vol.98, pp.19, 2012, https://doi.org/10.1007/s00253-014-5876-3
- The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in Metarhizium acridum vol.101, pp.12, 2017, https://doi.org/10.1007/s00253-017-8290-9
- Ethanol Dehydrogenase I Contributes to Growth and Sporulation Under Low Oxygen Condition via Detoxification of Acetaldehyde in Metarhizium acridum vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.01932
- Mid1 affects ion transport, cell wall integrity, and host penetration of the entomopathogenic fungus Metarhizium acridum vol.103, pp.4, 2012, https://doi.org/10.1007/s00253-018-09589-8
- The homeobox gene MaH1 governs microcycle conidiation for increased conidial yield by mediating transcription of conidiation pattern shift-related genes in Metarhizium acridum vol.103, pp.5, 2012, https://doi.org/10.1007/s00253-018-9558-4
- Unveiling the function and regulation control of the DUF3129 family proteins in fungal infection of hosts vol.374, pp.1767, 2012, https://doi.org/10.1098/rstb.2018.0321
- Dual RNA-Seq analysis of Medicago truncatula and the pea powdery mildew Erysiphe pisi uncovers distinct host transcriptional signatures during incompatible and compatible interactions and pathogen eff vol.112, pp.3, 2020, https://doi.org/10.1016/j.ygeno.2019.12.007
- Functional analysis of seven regulators of G protein signaling (RGSs) in the nematode-trapping fungus Arthrobotrys oligospora vol.12, pp.1, 2012, https://doi.org/10.1080/21505594.2021.1948667
- OSIP1 is a self‐assembling DUF3129 protein required to protect fungal cells from toxins and stressors vol.23, pp.3, 2012, https://doi.org/10.1111/1462-2920.15381
- Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity vol.33, pp.4, 2012, https://doi.org/10.1093/plcell/koab011
- Evaluation of Native Entomopathogenic Fungi for the Control of Fall Armyworm (Spodoptera frugiperda) in Thailand: A Sustainable Way for Eco-Friendly Agriculture vol.7, pp.12, 2021, https://doi.org/10.3390/jof7121073